

BOARD OF DIRECTORS

Mr Craig Hall Non-Executive Director

Mr Alan Still Non-Executive Director

Ms Kate Stoney Non-Executive Director, Company Secretary

HORSESHOE METALS LIMITED

ABN 20 123 133 166 24 Mumford Place Balcatta WA 6021

T: +61 8 6241 1844 F: +61 8 6241 1811 E: info@horseshoemetals.com.au

•

www.horseshoemetals.com.au

# Horseshoe Lights Phase 1 Stockpile Results Received

- All Phase 1 activity results received
- Gold rehandle stockpile volume averages 1.13 g/t Au
- Vat 2 (initial flotation tails) averages 1.04 g/t Au and 0.88% Cu
- Material within Gold Leach Vats 3, 4, 5 and 6 average 0.57 g/t Au
- Vat Perimeter material averages 0.58 g/t Au
- C20 stockpile contains significant gold and copper mineralisation
- Horseshoe assessing early development/cashflow opportunities from the processing of historic gold and copper stockpiles
- Planned Phase 2 activities will include further RC drilling, auger sampling and stockpile resource estimations at Horseshoe Lights

Horseshoe Metals Limited (ASX: HOR) (the 'Company') is pleased to provide the following update on exploration activities at its Horseshoe Lights Copper-Gold project located in the Bryah Basin, Murchison region of Western Australia (refer Figure 6).

The Phase 1 Auger drilling programme was recently completed and designed to assess various surface stockpile materials that remain from historic gold and copper mining activities (refer Figure 2). These targets are under investigation for early development opportunities at the historic mine site, which might include offsite processing of gold-bearing materials.

# Significant results received from this programme include:

- 4m @ 5.34g/t Au from surface (MVAG008- Gold rehandle area)
- 4m @ 2.40g/t Au from surface (MVAG023- Gold rehandle area)
- 4m @ 2.19g/t Au from surface (MVAG025- Gold rehandle area)

In addition, shallow Reverse Circulation (RC) drilling of the C20 stockpile (refer Figure 4) was completed in late August on lines 20m apart with 10m spaced holes, part of a proposed 10m x 10m spaced drill hole pattern designed to confirm the grade and distribution of mineralisation. Results confirmed significant gold and copper material within the stockpile in coherent minable volumes. Phase 2 activities at Horseshoe Lights will include completion of the 10m x 10m drill pattern in the C20 stockpile.

# Significant results received from the C20 stockpile drilling include:

- 9m @ 1.69g/t Au and 0.4 % Cu from 1m in hole C20\_RC8
- 6m @ 1.20g/t Au from surface in hole C20\_RC21
- 3m @ 2.54g/t Au and 0.73% Cu from surface in hole C20\_RC46

Targets tested by augering included gold-bearing vat leach material, vat walls, gold tailings and copper flotation tailings (refer releases dated 6 August 2021, 10 September 2021, and Figures 2 and 3). 255 holes totalling 1204.8m were completed in Phase 1 activities during July and August 2021, as outlined below (Table 1):

- 84 holes into vat leach gold-bearing material from early mining activities prior to Barrick's gold production (Vats 3, 4, 5 and 6 refer Figure 2 blue collars);
- 20 holes into initial copper flotation tails pumped into a Barrick-mined gold vat (Vat 2 refer Figure 2 green collars) the same material forming the flotation tailings resource (refer Table 6);
   72 holes in an area of initial gold production including vats covering by subsequent mining activity (Gold rehandle area refer Figure 2 yellow collars);
  - 62 holes to assess the perimeter of material constructed to constrain the gold vats (Vat Perimeterrefer Figure 2 - magenta collars;
  - 34 holes of up to 10m depth being first-pass perimeter drilling of material forming the gold tailings and copper flotation tailings dams' walls (refer Figure 3), with some planned holes unable to be completed, and

4 holes into the flotation tailings as a grade/depth check and to assess moisture content for materials handling considerations.

| Vat and Stockpile Augering      | Holes | m      |
|---------------------------------|-------|--------|
| Gold Vats 3, 4, 5 and 6         | 63    | 375.3  |
| Initial Flotation tails (Vat 2) | 20    | 95.2   |
| Gold Rehandle Area              | 72    | 240.7  |
| Flotation Tails                 | 4     | 29.6   |
| Perimeter augering              | holes | m      |
| Vats 1 to 6                     | 62    | 302.4  |
| Tails Dams                      | 34    | 161.6  |
| Totals                          | 255   | 1204.8 |

#### Table 1: Phase 1 Auger Drilling at Horseshoe Lights summary

#### **Discussion of Results:**

Vat and Gold Rehandle area auger sampling was typically sampled every metre, and subset thereof at the bottom of hole, while Vat and Tails Perimeter sampling was undertaken every two metres down hole.

#### Gold Leach Vats 3, 4, 5 and 6:

Remnant gold leach vats (Vats 3, 4, 5 and 6 - refer Figure 2) consists of large blue plastic-lined ponds, with augering designed to assess gold concentrations and to assist in determining the geometry and volume of material above the liner. Depths of holes encountered in the centre of the ponds were typically between 4m - 5m for Vats 4, 5 and 6; and 7m in Vat 3. Assay results from Vats 3, 4, 5 and 6 are now complete, averaging 0.57 g/t Au length-weighted for results above the vat liners, and are summarised below in Table 2, and detailed further in Table 4:

#### Table 2: Summary of auger grades- Gold Leach Vats 3, 4, 5 and 6

| Area             | Samples | Ave Grade Au |
|------------------|---------|--------------|
| VAT 3            | 90      | 0.53         |
| VAT 4            | 88      | 0.53         |
| VAT 5            | 94      | 0.73         |
| VAT 6            | 93      | 0.50         |
| VATS 3,4,5 and 6 | 365     | 0.57         |

These results compare favourably with historical work undertaken in 1985 (refer announcement 10 September 2021). Some minor contamination of the surface of Vat 3 from Copper Flotation Tails from Vat 2 in the NE corner could be observed in the results and is considered easily rectifiable ahead of any processing of either material.

As there is currently insufficient information to estimate a Mineral Resource for Vats 3, 4, 5 and 6, the Company contends releasing an Exploration Target for Vats 3, 4, 5 and 6 the most appropriate way to discuss these results. From the grade assessment, preliminary investigation of the vat volumes and anticipated density the Company considers an Exploration Target for Vats 3, 4, 5 and 6 at Horseshoe Lights of between:

Exploration target - Gold Leach Vats 3, 4, 5 and 6

- 140,000 to 210,000 tonnes,
- Grading between 0.55 to 0.60g/t Au,
- Containing metal of between 2475 -4050 oz gold

The above does not represent an estimate of a Mineral Resource or Ore Reserve. The Company notes that the potential quantity and grade is conceptual in nature, that there has been insufficient exploration to estimate a Mineral Resource and that it is uncertain if further exploration will result in the estimation of a Mineral Resource.

# Vat 2 and Gold Rehandle Area:

Analysis of results from augering of Vat 2 confirmed the Vat had been fully excavated of original goldbearing material and filled with initial tailings material from the Copper Plant circuit. Some 92 samples within the now better-defined Vat 2 averaged 1.04 g/t Au and 0.88% Cu.

| Area               | Samples | Ave Grade Au | Ave Grade Cu |
|--------------------|---------|--------------|--------------|
| VAT 2              | 92      | 1.04         | 0.88         |
| Gold Rehandle Area | 194     | 1.13         | 0.16         |
| Vat Perimeter      | 166     | 0.58         | N/A          |

#### Table 3: Summary of auger grades- Vat 2, Gold Rehandle area, Vats 1-6 Perimeter

As there is currently insufficient information to estimate a Mineral Resource for Vat 2, the Company contends releasing an Exploration Target for Vat 2 the most appropriate way to discuss these results. From the grade assessment, preliminary investigation of the vat volume and anticipated density the Company considers an Exploration Target for Vat 2 at Horseshoe Lights of between:

# Exploration target - Initial Flotation Tails - Vat 2

- 55,000 to 75,000 tonnes,
- Grading between 0.9 to 1.1 g/t Au; 0.8- 1.0% Cu
- Containing metal of between 1590 -2650 oz gold, and between 440 -750 tonnes Cu metal.

The above does not represent an estimate of a Mineral Resource or Ore Reserve. The Company notes that the potential quantity and grade is conceptual in nature, that there has been insufficient exploration to estimate a Mineral Resource and that it is uncertain if further exploration will result in the estimation of a Mineral Resource.

The area to the west of the Gold Vat area, now renamed the Gold Rehandle area, consistently returned significant gold values averaging 1.13 g/t Au over a coherent mineable volume, increasing in depth from the west to the east, where it achieves a maximum height of 4m, in the vicinity of two now-covered (smaller) original gold leach Vats (referred to previously by the Company as Vats 7 and 8). The results

confirmed some minor associated copper in the near surface, averaging 0.16% Cu over the samples analysed.

As there is currently insufficient information to estimate a Mineral Resource for the Gold Rehandle area, the Company contends releasing an Exploration Target for the Gold Rehandle area the most appropriate way to discuss these results. From the grade assessment, preliminary investigation of the vat volumes and anticipated density the Company considers an Exploration Target for the Gold Rehandle area at Horseshoe Lights of between:

Exploration target- Gold Rehandle Area.

- 75,000 to 120,000 tonnes,
- Grading between 1.0 to 1.2 g/t Au,
- Containing metal of between 2400 -4600 oz gold.

The above does not represent an estimate of a Mineral Resource or Ore Reserve. The Company notes that the potential quantity and grade is conceptual in nature, that there has been insufficient exploration to estimate a Mineral Resource and that it is uncertain if further exploration will result in the estimation of a Mineral Resource.

# Vat 1 - 6 Perimeter Augering, Tails Dam Augering:

The results of perimeter auger drilling of Vats 1 - 6 on a variable but typically sub-10m spacing confirmed the likelihood that the construction material for the vats consisted of low grade gold-mineralised material, as suggested by initial results from subdrill below the liner associated with vats 4, 5 and 6. Results from 166 generally 2m samples from the perimeter of the Vats averaged 0.58 g/t Au, but as would be expected, were quite variable. Further infill drilling is planned in better performing portions of the Vat perimeter to better assess the volume. No exploration target is suggested at this point.

Results from Tails perimeter auger drilling (refer Figure 3, and Table 4) generally confirmed subeconomic concentrations of mineralisation, not warranting further investigation. Results from the four tailings holes to primarily assess moisture content for materials handling purposes returned lower than average resource grade values but generally comparable to local values.

# C20 Stockpile Drilling:

The C20 stockpile is interpreted to be a low grade rehandle stockpile created during the gold only CIP operations phase in the mid to late 1980's. During the subsequent Chalcocite DSO mining phase, the surface of this stockpile was used a resample area for high grade ore excavated from the margins of the DSO orebody that may have been diluted during mining.

# Satisfaction of ASX activity requirements prior to relisting

This release covers the balance of results undertaken in Phase 1 activities at Horseshoe Lights, and coupled with recently completed aerial mapping and photography at Glenloth in South Australia, completes activity requirements laid out by the ASX prior to giving consideration to the lifting of the suspension of trading in shares of the Company.

The Company anticipates the commencement of Phase 2 activities, including further RC drilling, auger sampling and stockpile resource estimations at Horseshoe Lights following the lifting of this suspension.

#### The Board of Directors of HOR has authorised this announcement to be given to the ASX.

Enquiries Craig Hall Non-Executive Director, T: +61 8 6241 1844 E: info@horseshoemetals.com.au

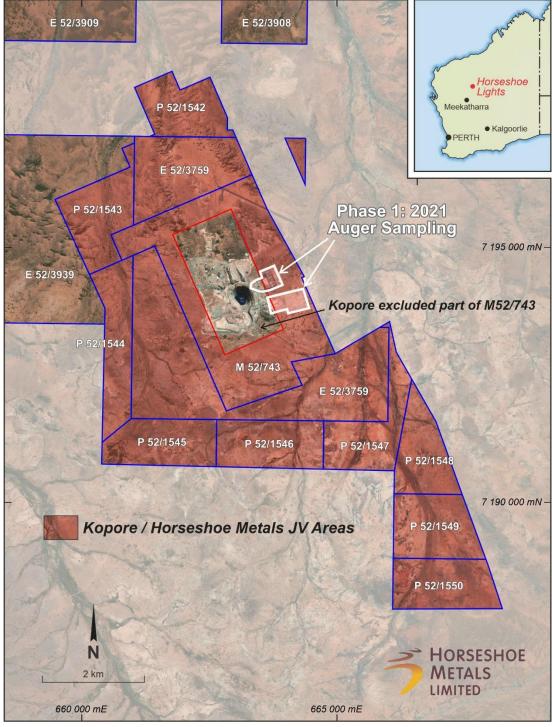



Figure 1: Horseshoe Lights Project tenure and location, with areas of Figure 2 and 3 noted. Tenements E52/3759, P52-1542-50, and part of M52/743 are subject to a farm-in agreement with Kopore Metals Limited (refer ASX release 28 January 2021 – *"Horseshoe West Copper/Gold Farm-in and JV Agreement"*)

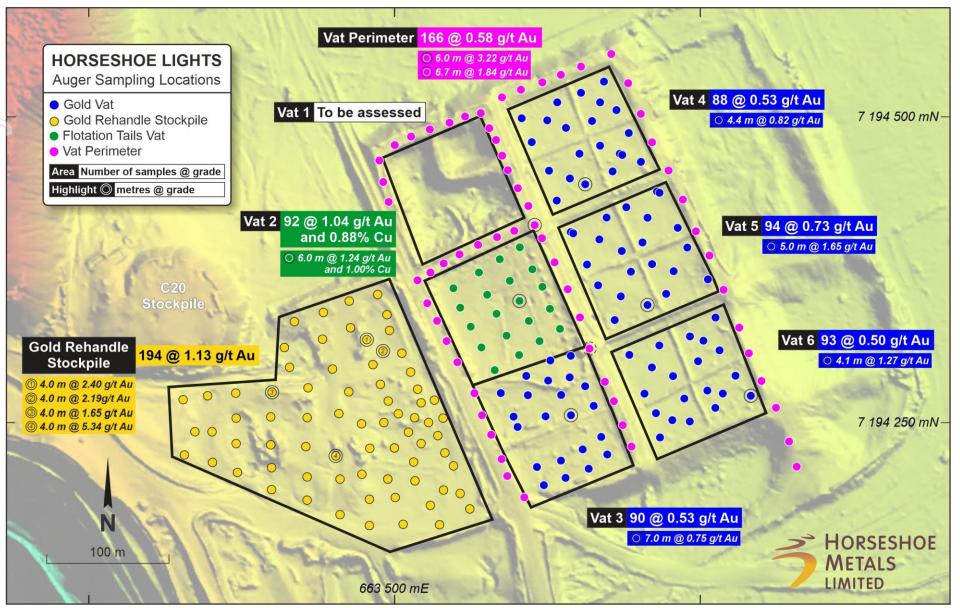



Figure 2: Location and average length-weighted grade of areas tested by 2021 Auger drilling, with drilling of Vats 3, 4, 5 and 6 denoted by blue collars; Vat 2 by green collars; Gold rehandle area by yellow collars, and Vat perimeter material by magenta collars. Maximum intersects denoted by circled collars. Location of C20 stockpile is immediately NW of Gold Rehandle stockpile

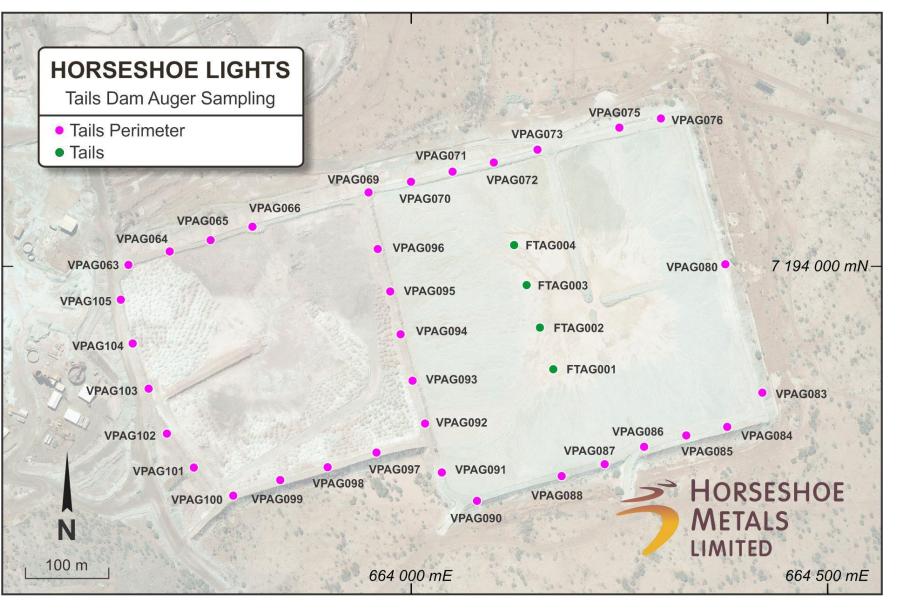



Figure 3: Auger drilling completed on Horseshoe Gold (left) and Copper Flotation (Right) Tailings Dams. Refer Table 6 for inferred Mineral Resource on Flotation Tailings.

Four check holes (green) were completed on the Flotation tails to primarily assess moisture content for materials handling purposes




Figure 4: RC drilling Location plan for C20 2021 Stockpile drilling, with highlighted copper and gold intersects

50

HORSESHOE

METALS LIMITED

C20 Stockpile

C20\_RC46 3 @ 2.54

3@0.73

C20\_RC31 6 @ 0.40

2@0.81

C20\_RC20

C20\_RC5

8@1.04

5@1.60

4@0.43

C20\_RC32

C20\_RC22 5@1.11

C20\_RC6 8@0.55

5 @ 0.38

5@0.49

C20\_RC23

C20\_RC7

N

25 Metres

9@0.83

9@1.33

C20\_RC8

9@1.69 4@0.43

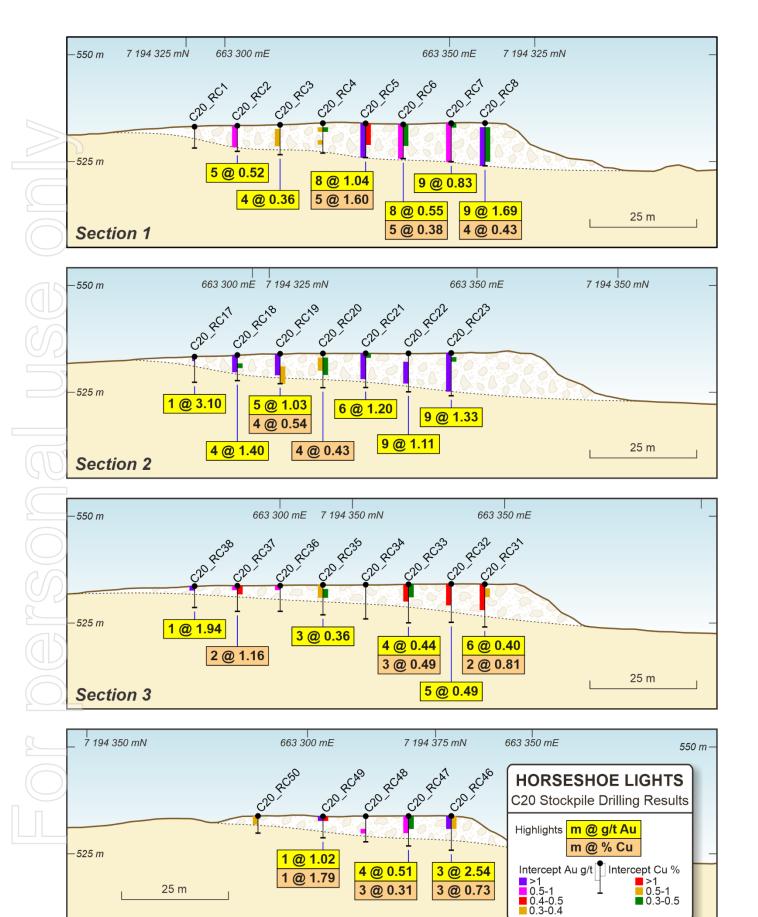



Figure 5: Stacked RC Drill Sections for C20 Stockpile drilling, with highlighted copper and gold intersects

Section 4

### Table 4 Auger – 2021 Auger Summary:

NB: Vats 3, 4, 5 and 6 assayed by Nagrom method FA50\_OES for Gold only; Vat 2 and Gold Rehandle Area assayed by Nagrom Method ICP008- 40gram charge Aqua Regia Digest for Copper Gold only, with ICP finish. Sub-drill results not included in Intersect. All results from surface.

| Та            | arget    | Site ID             | MGA North          | MGA East         | AHD<br>RL         | Dip        | Depth<br>(m) | From<br>(m) | To (m)       | Interval<br>(m) | Au g/t       | Cu %      | Sub Drill<br>Depth (m) |
|---------------|----------|---------------------|--------------------|------------------|-------------------|------------|--------------|-------------|--------------|-----------------|--------------|-----------|------------------------|
|               |          | VTAG001             | 7194394            | 663603           | 524               | -90        | 5.00         | 0.00        | 3.00         | 3.00            | 0.81         | 0.50      | 2.00                   |
|               |          | VTAG002<br>VTAG003  | 7194384<br>7194373 | 663587           | 524               | -90<br>-90 | 3.00<br>6.00 | 0.00        | 3.00<br>4.00 | 3.00<br>4.00    | 0.59         | 0.85      | 2.00                   |
|               |          | VTAG003<br>VTAG004  | 7194360            | 663570<br>663549 | 523<br>523        | -90        | 4.00         | 0.00        | 4.00         | 4.00            | 0.81 0.87    | 0.86      | 2.00                   |
|               |          | VTAG004<br>VTAG005  | 7194355            | 663576           | 523               | -90        | 4.00         | 0.00        | 4.00         | 4.00            | 1.06         | 1.01      |                        |
|               |          | VTAG006             | 7194345            | 663554           | 523               | -90        | 4.70         | 0.00        | 4.70         | 4.70            | 0.92         | 1.04      |                        |
|               |          | VTAG007             | 7194367            | 663595           | 523               | -90        | 5.00         | 0.00        | 5.00         | 5.00            | 1.10         | 0.94      |                        |
|               |          | VTAG008             | 7194376            | 663613           | 524               | -90        | 5.00         | 0.00        | 5.00         | 5.00            | 0.95         | 0.77      |                        |
|               | Vat 2    | VTAG009             | 7194362            | 663621           | 524               | -90        | 7.30         | 0.00        | 6.00         | 6.00            | 0.90         | 0.71      | 1.30                   |
|               | otation  | VTAG010             | 7194350            | 663603           | 523               | -90        | 6.00         | 0.00        | 6.00         | 6.00            | 1.24         | 1.00      |                        |
|               | ails Vat | VTAG011             | 7194340            | 663584           | 523               | -90        | 5.80         | 0.00        | 5.80         | 5.80            | 1.05         | 1.05      |                        |
|               |          | VTAG012<br>VTAG013  | 7194329            | 663563           | 523               | -90        | 5.00         | 0.00        | 5.00         | 5.00            | 1.16         | 1.01      |                        |
|               |          | VTAG013<br>VTAG014  | 7194312<br>7194322 | 663572<br>663592 | 523<br>523        | -90<br>-90 | 5.00<br>4.80 | 0.00        | 5.00<br>4.80 | 5.00<br>4.80    | 1.17<br>0.75 | 0.91 0.62 |                        |
|               |          | VTAG014<br>VTAG015  | 7194322            | 663610           | 523               | -90        | 4.50         | 0.00        | 4.50         | 4.50            | 1.26         | 0.02      |                        |
|               |          | VTAG016             | 7194344            | 663628           | 524               | -90        | 4.40         | 0.00        | 4.40         | 4.40            | 1.37         | 1.08      |                        |
|               |          | VTAG017             | 7194327            | 663636           | 524               | -90        | 4.60         | 0.00        | 4.00         | 4.00            | 1.17         | 0.94      | 0.60                   |
|               |          | VTAG018             | 7194317            | 663619           | 523               | -90        | 4.30         | 0.00        | 4.30         | 4.30            | 1.16         | 0.97      |                        |
|               |          | VTAG019             | 7194306            | 663602           | 523               | -90        | 2.80         | 0.00        | 2.80         | 2.80            | 0.91         | 0.81      |                        |
|               |          | VTAG020             | 7194293            | 663582           | 523               | -90        | 3.30         | 0.00        | 3.00         | 3.00            | 1.44         | 0.35      | 0.30                   |
|               |          | VTAG021             | 7194275            | 663587           | 523               | -90        | 5.50         | 0.00        | 1.00         | 1.00            | 0.49         | 0.07      | 4.50                   |
| (1)           |          | VTAG022             | 7194289            | 663608           | 523               | -90        | 5.70         | 0.00        | 5.70         | 5.70            | 0.27         | 0.06      | 0.40                   |
| 1             |          | VTAG023             | 7194301            | 663628           | 523               | -90        | 4.40         | 0.00        | 2.00         | 2.00            | 0.91         | 0.85      | 2.40                   |
|               |          | VTAG024<br>VTAG025  | 7194305<br>7194288 | 663645           | 524               | -90<br>-90 | 3.00<br>4.30 | 0.00        | 1.00<br>2.00 | 1.00<br>2.00    | 0.84         | 0.74 0.37 | 2.00                   |
| -12           |          | VTAG025<br>VTAG026  | 7194285            | 663644<br>663626 | 524<br>524        | -90        | 4.00         | 0.00        | 3.00         | 3.00            | 0.42 0.55    | 0.37      | 2.30<br>1.00           |
| ))            |          | VTAG026<br>VTAG027  | 7194285            | 663598           | 523               | -90        | 6.00         | 0.00        | 6.00         | 6.00            | 0.55         | 0.26      | 1.00                   |
| $\mathbb{P}$  |          | VTAG028             | 7194273            | 663610           | 523               | -90        | 5.00         | 0.00        | 5.00         | 5.00            | 0.57         | 0.08      |                        |
|               |          | VTAG029             | 7194273            | 663637           | 523               | -90        | 4.00         | 0.00        | 4.00         | 4.00            | 0.85         | 0.15      |                        |
|               |          | VTAG030             | 7194280            | 663656           | 523               | -90        | 3.00         | 0.00        | 1.00         | 1.00            | 0.59         | 0.44      | 2.00                   |
| - \.          | Vat 3    | VTAG031             | 7194264            | 663663           | 523               | -90        | 4.20         | 0.00        | 4.20         | 4.20            | 0.44         | 0.11      |                        |
|               | varo     | VTAG032             | 7194257            | 663645           | 523               | -90        | 7.00         | 0.00        | 7.00         | 7.00            | 0.75         | 0.09      |                        |
| 12            |          | VTAG033             | 7194256            | 663624           | 523               | -90        | 7.00         | 0.00        | 7.00         | 7.00            | 0.34         | 0.08      |                        |
|               |          | VTAG034             | 7194247            | 663601           | 523               | -90        | 6.00         | 0.00        | 6.00         | 6.00            | 0.54         | 0.08      |                        |
| $(\Psi)$      |          | VTAG035<br>VTAG036  | 7194214<br>7194219 | 663617<br>663637 | 523<br>523        | -90<br>-90 | 7.00<br>6.00 | 0.00        | 7.00<br>5.00 | 7.00 5.00       | 0.53 0.59    |           | 1.00                   |
|               |          | VTAG036<br>VTAG037  | 7194219            | 663654           | 523               | -90        | 5.50         | 0.00        | 5.50         | 5.50            | 0.59         |           | 1.00                   |
|               |          | VTAG038             | 7194229            | 663670           | 523               | -90        | 4.80         | 0.00        | 4.00         | 4.00            | 0.34         |           | 0.80                   |
|               |          | VTAG039             | 7194224            | 663674           | 523               | -90        | 4.00         | 0.00        | 4.00         | 4.00            | 0.47         |           | 0.50                   |
|               |          | VTAG040             | 7194213            | 663659           | 523               | -90        | 3.00         | 0.00        | 2.00         | 2.00            | 0.61         |           | 1.00                   |
|               |          | VTAG041             | 7194205            | 663640           | 523               | -90        | 2.80         | 0.00        | 2.80         | 2.80            | 0.53         |           |                        |
|               |          | VTAG042             | 7194199            | 663623           | 523               | -90        | 4.00         | 0.00        | 3.00         | 3.00            | 0.45         |           | 1.00                   |
|               |          | VTAG043             | 7194499            | 663604           | 520               | -90        | 3.00         | 0.00        | 3.00         | 3.00            | 0.54         |           |                        |
| -0            |          | VTAG044             | 7194480            | 663613           | 520               | -90        | 4.00         | 0.00        | 3.00         | 3.00            | 0.75         |           | 1.00                   |
| I             |          | VTAG045             | 7194498            | 663625           | 520               | -90        | 4.70         | 0.00        | 4.70         | 4.70            | 0.45         |           |                        |
|               |          | VTAG046<br>VTAG047  | 7194492<br>7194512 | 663641<br>663634 | 520<br>520        | -90<br>-90 | 4.70<br>4.90 | 0.00        | 4.70<br>4.90 | 4.70<br>4.90    | 0.33 0.43    |           |                        |
|               |          | VTAG047<br>VTAG048  | 7194512            | 663653           | 520               | -90        | 4.40         | 0.00        | 4.40         | 4.90            | 0.43         |           |                        |
| $\mathcal{V}$ |          | VTAG040             | 7194529            | 663672           | 520               | -90        | 4.00         | 0.00        | 4.00         | 4.00            | 0.42         |           |                        |
|               |          | VTAG050             | 7194512            | 663669           | 520               | -90        | 4.30         | 0.00        | 4.30         | 4.30            | 0.40         |           |                        |
|               |          | VTAG051             | 7194506            | 663682           | 521               | -90        | 5.30         | 0.00        | 5.00         | 5.00            | 0.50         |           | 0.30                   |
|               |          | VTAG052             | 7194497            | 663662           | 520               | -90        | 4.50         | 0.00        | 4.50         | 4.50            | 0.49         |           |                        |
| V V           | Vat 4    | VTAG053             | 7194477            | 663669           | 521               | -90        | 4.40         | 0.00        | 4.40         | 4.40            | 0.41         |           |                        |
|               |          | VTAG054             | 7194487            | 663692           | 521               | -90        | 4.50         | 0.00        | 1.00         | 1.00            | 0.79         |           | 3.50                   |
|               |          | VTAG055             | 7194464            | 663702           | 521               | -90        | 4.60         | 0.00        | 3.00         | 3.00            | 0.42         |           | 1.60                   |
|               |          | VTAG056             | 7194470            | 663685           | 521               | -90        | 1.00         | 0.00        | 1.00         | 1.00            | 0.72         |           |                        |
|               |          | VTAG056A<br>VTAG057 | 7194469<br>7194456 | 663687<br>663679 | <u>521</u><br>521 | -90<br>-90 | 4.60<br>4.30 | 0.00        | 4.60<br>4.30 | 4.60<br>4.30    | 0.50 0.48    |           |                        |
| 1)            |          | VTAG057<br>VTAG058  | 7194450            | 663652           | 521               | -90        | 4.30         | 0.00        | 4.30         | 4.30            | 0.48         |           |                        |
|               |          | VTAG058<br>VTAG059  | 7194470            | 663627           | 521               | -90        | 4.10         | 0.00        | 4.00         | 4.00            | 0.88         |           |                        |
|               |          | VTAG060             | 7194432            | 663633           | 521               | -90        | 4.20         | 0.00        | 3.00         | 3.00            | 0.80         |           | 1.20                   |
|               |          | VTAG061             | 7194450            | 663644           | 521               | -90        | 4.20         | 0.00        | 4.20         | 4.20            | 0.73         |           |                        |
|               |          | VTAG062             | 7194445            | 663656           | 521               | -90        | 4.40         | 0.00        | 4.40         | 4.40            | 0.82         |           |                        |
|               |          | VTAG063             | 7194418            | 663674           | 520               | -90        | 4.40         | 0.00        | 4.00         | 4.00            | 0.62         |           | 0.40                   |
| 1             |          | VTAG064             | 7194406            | 663645           | 520               | -90        | 1.60         | 0.00        | 1.60         | 1.60            | 0.98         |           |                        |
| $\sim$        |          | VTAG064A            | 7194405            | 663647           | 520               | -90        | 2.60         | 0.00        | 2.60         | 2.60            | 0.44         |           | 4.00                   |
| $\mathcal{V}$ |          | VTAG065             | 7194380            | 663658           | 520               | -90<br>-90 | 4.00         | 0.00        | 3.00         | 3.00            | 0.63         |           | 1.00                   |
| $\mathcal{V}$ |          | VTAG066<br>VTAG067  | 7194400<br>7194391 | 663668<br>663686 | 520<br>520        | -90<br>-90 | 5.00<br>5.00 | 0.00        | 5.00<br>5.00 | 5.00<br>5.00    | 0.57 0.50    |           |                        |
| 1             |          | VTAG067<br>VTAG068  | 7194391            | 663690           | 520               | -90        | 4.50         | 0.00        | 4.00         | 4.00            | 0.50         |           | 0.50                   |
|               |          | VTAG069             | 7194439            | 663715           | 521               | -90        | 2.40         | 0.00        | 2.40         | 2.40            | 0.33         |           | 0.00                   |
|               |          | VTAG069A            | 7194438            | 663717           | 521               | -90        | 4.50         | 0.00        | 4.00         | 4.00            | 0.57         |           | 0.50                   |
|               |          | VTAG070             | 7194410            | 663732           | 521               | -90        | 5.00         | 0.00        | 5.00         | 5.00            | 0.52         |           |                        |
| N             | Vat 5    | VTAG071             | 7194418            | 663707           | 521               | -90        | 5.00         | 0.00        | 5.00         | 5.00            | 0.61         |           |                        |
| v             |          | VTAG072             | 7194398            | 663703           | 521               | -90        | 5.50         | 0.00        | 5.00         | 5.00            | 0.78         |           | 0.50                   |
|               |          | VTAG073             | 7194380            | 663711           | 520               | -90        | 4.50         | 0.00        | 4.50         | 4.50            | 0.49         |           |                        |
| 1             |          | VTAG074             | 7194394            | 663740           | 521               | -90        | 3.40         | 0.00        | 3.40         | 3.40            | 0.80         |           |                        |
|               |          | VTAG075             | 7194368            | 663757           | 521               | -90        | 4.00         | 0.00        | 4.00         | 4.00            | 1.23         |           |                        |
|               |          | VTAG076             | 7194374            | 663729<br>663723 | 520               | -90        | 5.00         | 0.00        | 5.00         | 5.00            | 0.76         |           |                        |
|               |          | VTAG077<br>VTAG078  | 7194356<br>7194374 | 663723<br>663694 | 520<br>521        | -90<br>-90 | 5.00<br>5.00 | 0.00        | 5.00<br>5.00 | 5.00<br>5.00    | 0.73         |           |                        |
| 1             |          | VTAG078<br>VTAG079  | 7194374            | 663667           | 521               | -90        | 4.20         | 0.00        | 4.20         | 4.20            | 0.61         |           |                        |
|               |          | VTAG079<br>VTAG080  | 7194303            | 663681           | 520               | -90        | 5.00         | 0.00        | 4.20         | 4.20            | 0.69         |           | 1.00                   |
| 1             |          | VTAG080<br>VTAG081  | 7194354            | 663686           | 520               | -90        | 4.90         | 0.00        | 4.00         | 4.00            | 0.85         |           | 1.00                   |
|               |          | VTAG081<br>VTAG082  | 7194347            | 663707           | 520               | -90        | 5.00         | 0.00        | 5.00         | 5.00            | 1.65         |           |                        |
|               |          | VTAG083             | 7194314            | 663717           | 519               | -90        | 4.00         | 0.00        | 4.00         | 4.00            | 0.29         |           |                        |
|               |          | VTAG084             | 7194306            | 663693           | 519               | -90        | 2.80         | 0.00        | 2.80         | 2.80            | 0.33         |           |                        |
| V             | Vat 6    | VTAG085             | 7194274            | 663705           | 519               | -90        | 4.70         | 0.00        | 4.70         | 4.70            | 0.37         |           |                        |
|               |          | VTAG086             | 7194296            | 663711           | 519               | -90        | 4.70         | 0.00        | 4.70         | 4.70            | 0.43         |           |                        |
|               |          | VTAG087             | 7194289            | 663728           | 519               | -90        | 4.90         | 0.00        | 4.90         | 4.90            | 0.44         |           |                        |

| Target    | Site ID<br>VTAG088 | MGA North<br>7194321 | MGA East<br>663742 | AHD<br>RL<br>519 | <b>Dip</b><br>-90 | Depth<br>(m)<br>4.90 | From<br>(m)<br>0.00 | <b>To (m)</b><br>4.60 | Interval<br>(m)<br>4.60 | Au g/t       | Cu %      | Sub Dr<br>Depth (<br>0.30 |
|-----------|--------------------|----------------------|--------------------|------------------|-------------------|----------------------|---------------------|-----------------------|-------------------------|--------------|-----------|---------------------------|
|           | VTAG089            | 7194336              | 663763             | 519              | -90               | 2.60                 | 0.00                | 2.60                  | 2.60                    | 0.32         |           | 0.30                      |
|           | VTAG090            | 7194310              | 663766             | 519              | -90               | 4.80                 | 0.00                | 4.80                  | 4.80                    | 0.49         |           |                           |
|           | VTAG091            | 7194317              | 663753             | 519              | -90               | 4.20                 | 0.00                | 4.20                  | 4.20                    | 0.42         |           |                           |
|           | VTAG092            | 7194301              | 663749             | 519              | -90               | 4.80                 | 0.00                | 4.80                  | 4.80                    | 0.78         |           |                           |
|           | VTAG093            | 7194277              | 663756             | 519              | -90               | 4.10                 | 0.00                | 4.10                  | 4.10                    | 0.32         |           |                           |
|           | VTAG094            | 7194289              | 663779             | 519              | -90               | 5.00                 | 0.00                | 5.00                  | 5.00                    | 0.79         |           |                           |
|           | VTAG095            | 7194272              | 663792             | 519              | -90               | 4.10                 | 0.00                | 4.10                  | 4.10                    | 1.27         |           |                           |
|           | VTAG096            | 7194274              | 663769             | 519              | -90               | 4.10                 | 0.00                | 4.10                  | 4.10                    | 0.34         |           |                           |
|           | VTAG097            | 7194263              | 663763             | 519              | -90               | 4.20                 | 0.00                | 4.20                  | 4.20                    | 0.41         |           |                           |
|           | VTAG098            | 7194270              | 663737             | 519              | -90               | 4.10                 | 0.00                | 4.10                  | 4.10                    | 0.32         |           |                           |
|           | VTAG099            | 7194258              | 663714             | 519              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.52         |           |                           |
|           | VTAG100            | 7194238              | 663718             | 519              | -90               | 4.00                 | 0.00                | 3.00                  | 3.00                    | 0.35         |           | 1.00                      |
|           | VTAG101            | 7194253              | 663728             | 519              | -90               | 4.50                 | 0.00                | 4.50                  | 4.50                    | 0.50         |           |                           |
|           | VTAG102            | 7194251              | 663742             | 519              | -90               | 5.00                 | 0.00                | 5.00                  | 5.00                    | 0.64         |           |                           |
|           | MVAG001            | 7194355              | 663487             | 525              | -90               | 5.00                 |                     |                       | NSI                     |              |           | 5.00                      |
|           | MVAG002            | 7194350              | 663463             | 525              | -90               | 5.00                 |                     |                       | NSI                     |              |           | 5.00                      |
|           | MVAG003            | 7194341              | 663442             | 525              | -90               | 5.00                 | 0.00                | 1.00                  | 1.00                    | 0.52         | 0.05      | 4.00                      |
|           | MVAG004            | 7194333              | 663419             | 524              | -90               | 4.00                 | 0.00                | 2.00                  | 2.00                    | 0.57         | 0.07      | 2.00                      |
|           | MVAG005            | 7194328              | 663465             | 525              | -90               | 4.50                 | 0.00                | 4.50                  | 4.50                    | 1.39         | 0.07      |                           |
|           | MVAG006            | 7194294              | 663450             | 525              | -90               | 4.00                 | 0.00                | 2.00                  | 2.00                    | 2.67         | 0.07      | 2.00                      |
|           | MVAG007            | 7194258              | 663455             | 525              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.64         | 0.10      |                           |
|           | MVAG008            | 7194223              | 663452             | 524              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 5.34         | 0.39      |                           |
|           | MVAG009            | 7194204              | 663456             | 524              | -90               | 4.00                 | 0.00                | 2.00                  | 2.00                    | 1.51         | 0.30      | 2.00                      |
|           | MVAG010            | 7194175              | 663456             | 524              | -90               | 1.50                 | 0.00                | 1.00                  | 1.00                    | 0.32         | 0.62      | 0.50                      |
|           | MVAG011            | 7194167              | 663508             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | NSI                     | 0.55         | 0.17      | 4.00                      |
|           | MVAG012            | 7194167              | 663537             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.56         | 0.15      |                           |
|           | MVAG013            | 7194192              | 663554             | 523              | -90               | 4.00                 | 0.00                | 1.00                  | 1.00                    | 0.49         | 0.56      | 3.00                      |
|           | MVAG014            | 7194203              | 663517             | 523              | -90               | 3.00                 | 0.00                | 3.00                  | 3.00                    | 0.44         | 0.18      |                           |
|           | MVAG015            | 7194189              | 663501             | 523              | -90               | 3.00                 | 0.00                | 2.00                  | 2.00                    | 0.58         | 0.05      | 1.00                      |
|           | MVAG016            | 7194230              | 663500             | 523              | -90               | 3.80                 | 0.00                | 3.00                  | 3.00                    | 1.38         | 0.07      | 0.80                      |
|           | MVAG017            | 7194258              | 663504             | 523              | -90               | 2.00                 | 0.00                | 2.00                  | 2.00                    | 2.42         | 0.15      |                           |
|           | MVAG018            | 7194255              | 663517             | 523              | -90               | 1.00                 | 0.00                | 1.00                  | 1.00                    | 3.20         | 0.16      |                           |
|           | MVAG019            | 7194226              | 663542             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 1.46         | 0.08      |                           |
|           | MVAG020            | 7194267              | 663522             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.90         | 0.07      |                           |
|           | MVAG021            | 7194292              | 663514             | 524              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.66         | 0.06      |                           |
|           | MVAG022            | 7194339              | 663494             | 524              | -90               | 4.00                 | 0.00                | 3.00                  | 3.00                    | 0.80         | 0.08      | 1.00                      |
|           | MVAG023            | 7194309              | 663491             | 524              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 2.40         | 0.06      |                           |
|           | MVAG024            | 7194282              | 663489             | 524              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.78         | 0.05      |                           |
|           | MVAG025            | 7194318              | 663478             | 524              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 2.19         | 0.05      |                           |
|           | MVAG026            | 7194298              | 663483             | 524              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 1.07         | 0.19      |                           |
|           | MVAG027            | 7194278              | 663519             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.47         | 0.13      |                           |
|           | MVAG028            | 7194268              | 663495             | 524              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.68         | 0.19      |                           |
|           | MVAG029            | 7194251              | 663492             | 523              | -90               | 2.70                 | 0.00                | 2.70                  | 2.70                    | 1.31         | 0.16      |                           |
|           | MVAG030            | 7194243              | 663512             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.74         | 0.18      |                           |
|           | MVAG031            | 7194251              | 663528             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.97         | 0.13      |                           |
|           | MVAG032            | 7194240              | 663536             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.96         | 0.14      |                           |
|           | MVAG033            | 7194218              | 663516             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.35         | 0.11      |                           |
|           | MVAG034            | 7194215              | 663549             | 523              | -90               | 3.00                 | 0.00                | 3.00                  | 3.00                    | 0.61         | 0.18      |                           |
| Gold      | MVAG035<br>MVAG036 | 7194180              | 663562<br>663530   | 523              | -90<br>-90        | 3.00<br>4.00         | 0.00                | 3.00<br>1.00          | 3.00<br>1.00            | 0.34         | 0.18      | 0.00                      |
| Rehandle  | MVAG036<br>MVAG037 | 7194183              | 663530<br>663480   | 523<br>523       | -90               | 4.00                 | 0.00                | 1.00                  | 1.00                    | 0.62         | 0.62      | 3.00                      |
| Stockpile | MVAG037<br>MVAG038 | 7194166<br>7194187   | 663480<br>663429   | 523<br>524       | -90<br>-90        | 4.00                 | 0.00                | 1.00                  | 4.00                    | 0.44         | 0.26      | 3.00                      |
|           | MVAG038<br>MVAG039 | 7194187<br>7194206   | 663429<br>663429   | 524<br>525       | -90<br>-90        |                      | 0.00                | 4.00                  | 4.00                    | 2.40         | 0.22      |                           |
|           |                    | 7194206              | 663429             |                  |                   | 1.30<br>4.00         |                     | 4.00                  | 4.00                    | 1.12         |           |                           |
|           | MVAG040            |                      | 663429<br>663430   | 525              | -90               |                      | 0.00                | 4.00<br>2.00          | 2.00                    |              | 0.46      | 2.00                      |
|           | MVAG041<br>MVAG042 | 7194279<br>7194275   | 663400<br>663400   | 525<br>526       | -90<br>-90        | 4.00<br>4.00         | 0.00                | 2.00                  | 2.00                    | 0.61         | 0.12      | 2.00                      |
|           |                    |                      |                    |                  |                   |                      |                     |                       |                         |              |           |                           |
|           | MVAG043<br>MVAG044 | 7194255<br>7194232   | 663399<br>663399   | 525<br>528       | -90<br>-90        | 4.00<br>3.00         | 0.00                | 4.00 3.00             | 4.00 3.00               | 1.23<br>1.73 | 0.11      |                           |
|           | MVAG044<br>MVAG045 |                      | 663399<br>663400   | 528<br>525       | -90<br>-90        | 4.00                 |                     | 2.00                  | 2.00                    | 0.64         | 0.12      | 2.00                      |
|           | MVAG045<br>MVAG046 | 7194196<br>7194210   | 663400<br>663372   |                  |                   |                      | 0.00                |                       |                         |              | 0.17      | 2.00                      |
|           | MVAG046<br>MVAG047 | 7194210<br>7194188   |                    | 526              | -90<br>-90        | 3.00<br>4.00         | 0.00                | 3.00<br>2.00          | 3.00<br>2.00            | 0.97 0.62    | 0.19      | 2.00                      |
|           | MVAG047<br>MVAG048 | 7194188              | 663480<br>663371   | 523<br>526       | -90               | 3.00                 | 0.00                | 3.00                  | 3.00                    | 1.06         | 0.11 0.25 | 2.00                      |
|           | MVAG048<br>MVAG049 |                      |                    |                  | -90               |                      |                     |                       |                         |              |           |                           |
|           | MVAG049<br>MVAG050 | 7194275<br>7194272   | 663371<br>663348   | 527<br>527       | -90<br>-90        | 2.80<br>2.30         | 0.00                | 2.80<br>2.30          | 2.80<br>2.30            | 1.12<br>0.83 | 0.10      |                           |
|           | MVAG050<br>MVAG051 | 7194272              | 663328             | 527              | -90               | 2.30                 | 0.00                | 2.30                  | 2.30                    | 1.01         | 0.07      |                           |
|           | MVAG051<br>MVAG052 | 7194269              | 663337             | 527              | -90               | 1.30                 | 0.00                | 1.00                  | 1.00                    | 0.33         | 0.12      | 0.30                      |
|           | MVAG052<br>MVAG053 | 7194243              | 663351             | 527              | -90               | 2.30                 | 0.00                | 2.30                  | 2.30                    | 1.08         | 0.11      | 0.30                      |
|           | MVAG053<br>MVAG054 | 7194243              | 663329             | 527              | -90               | 1.30                 | 0.00                | 2.50                  | 2.30<br>NSI             | 1.00         | 0.13      | 1.30                      |
|           | MVAG054<br>MVAG055 | 7194224              | 663410             | 528              | -90               | 2.00                 | 0.00                | 1.00                  | 1.00                    | 0.32         | 0.12      | 1.00                      |
|           | MVAG055<br>MVAG056 | 7194312              | 663410             | 523              | -90               | 2.00                 | 0.00                | 2.00                  | 2.00                    | 0.32         | 0.12      | 1.00                      |
|           | MVAG056<br>MVAG057 | 7194296              | 663473             | 523              | -90               | 3.00                 | 0.00                | 3.00                  | 3.00                    | 0.64         | 0.06      |                           |
|           | MVAG057<br>MVAG058 | 7194229              | 663480             | 524              | -90               | 2.50                 | 0.00                | 2.50                  | 2.50                    | 1.34         | 0.22      |                           |
|           | MVAG058<br>MVAG059 | 7194229              | 663506             | 524              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.71         | 0.38      |                           |
|           | MVAG060            | 7194326              | 663496             | 524              | -90               | 1.00                 | 0.00                | 1.00                  | 1.00                    | 1.30         | 0.09      |                           |
|           | MVAG060<br>MVAG061 | 7194326              | 663541             | 523              | -90               | 4.00                 | 0.00                | 1.00                  | 1.00                    | 0.35         | 0.15      | 3.00                      |
|           | MVAG061<br>MVAG062 | 7194319              | 663442             | 525              | -90               | 2.00                 | 0.00                | 1.00                  | 1.00                    | 0.39         | 0.21      | 1.00                      |
|           | MVAG062<br>MVAG063 | 7194319              | 663533             | 523              | -90               | 4.00                 | 0.00                | 1.00                  | 1.00                    | 0.59         | 0.04      | 3.00                      |
|           | MVAG063<br>MVAG064 | 7194254              | 663540             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.52         | 0.17      | 3.00                      |
|           | MVAG064<br>MVAG065 | 7194233              | 663522             | 523              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.60         | 0.11      |                           |
|           | MVAG065<br>MVAG066 | 7194233              | 663352             | 523              | -90               | 2.30                 | 0.00                | 2.00                  | 2.00                    | 0.85         | 0.15      | 0.30                      |
|           | MVAG066<br>MVAG067 | 7194218              | 663428             | 527              | -90               | 2.30                 | 0.00                | 2.00                  | 2.00                    | 2.02         | 0.16      | 0.30                      |
|           | MVAG067<br>MVAG068 | 7194231<br>7194276   | 663463             | 525              | -90               | 4.00                 | 0.00                | 2.00                  | 2.00                    | 0.83         | 0.17      | 2.00                      |
|           |                    |                      |                    |                  |                   |                      |                     |                       |                         |              |           | 2.00                      |
|           | MVAG069<br>MVAG070 | 7194204<br>7194214   | 663495<br>663400   | 523<br>525       | -90               | 3.00<br>2.00         | 0.00                | 3.00                  | 3.00<br>2.00            | 0.92         | 0.16      |                           |
|           | MVAG070            |                      | 663400<br>663371   |                  | -90               |                      | 0.00                | 2.00                  |                         | 2.98         | 0.21      |                           |
|           | MVAG071            | 7194233              | 663371             | 526              | -90               | 2.60                 | 0.00                | 2.60                  | 2.60                    | 1.20         | 0.44      |                           |
|           | MVAG072            | 7194208              | 663474             | 524              | -90               | 4.00                 | 0.00                | 3.00                  | 3.00                    | 0.61         | 0.15      | 1.00                      |
|           | VPAG001            | 7194431              | 663496             | 524              | -90               | 4.70                 | 0.00                | 4.70                  | 4.70                    | 0.09         |           |                           |
|           | VPAG002            | 7194447              | 663491             | 524              | -90               | 6.00                 | 0.00                | 6.00                  | 6.00                    | 0.52         |           |                           |
|           | VPAG003            | 7194465              | 663488             | 524              | -90               | 6.70                 | 0.00                | 6.70                  | 6.70                    | 0.29         |           |                           |
|           | VPAG004            | 7194477              | 663501             | 524              | -90               | 1.50                 | 0.00                | 1.50                  | 1.50                    | 0.96         |           |                           |
| Vats      | VPAG005            | 7194484              | 663514             | 524              | -90               | 4.50                 | 0.00                | 4.50                  | 4.50                    | 0.20         |           |                           |
| Perimeter | VPAG006            | 7194490              | 663529             | 524              | -90               | 7.00                 | 0.00                | 7.00                  | 7.00                    | 0.32         |           | ļ                         |
|           | VPAG007            | 7194496              | 663545             | 525              | -90               | 7.00                 | 0.00                | 7.00                  | 7.00                    | 0.55         |           |                           |
|           | VPAG008            | 7194501              | 663558             | 525              | -90               | 7.00                 | 0.00                | 7.00                  | 7.00                    | 0.24         |           |                           |
|           | VPAG009            | 7194504              | 663571             | 525              | -90               | 4.00                 | 0.00                | 4.00                  | 4.00                    | 0.18         |           |                           |
|           | VPAG010            | 7194491              | 663578             | 525              | -90               | 7.00                 | 0.00                | 7.00                  | 7.00                    | 0.73         |           |                           |

| Target     | Site ID            | MGA North          | MGA East         | AHD<br>RL         | Dip        | Depth<br>(m)  | From<br>(m) | To (m)        | Interval<br>(m) | Au g/t       | Cu %      | Sub Drill<br>Depth (m |
|------------|--------------------|--------------------|------------------|-------------------|------------|---------------|-------------|---------------|-----------------|--------------|-----------|-----------------------|
|            | VPAG011            | 7194482            | 663583           | 525               | -90        | 1.50          | 0.00        | 1.50          | 1.50            | 1.38         |           | Deptil (III           |
|            | VPAG012            | 7194469            | 663588           | 525               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.46         |           |                       |
|            | VPAG013            | 7194457            | 663593           | 525               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.53         |           |                       |
|            | VPAG014<br>VPAG015 | 7194442<br>7194428 | 663601           | 525               | -90<br>-90 | 6.00<br>6.00  | 0.00        | 6.00          | 6.00            | 0.33         |           |                       |
|            | VPAG015<br>VPAG016 | 7194428            | 663610<br>663615 | 525<br>525        | -90        | 6.00          | 0.00        | 6.00<br>6.00  | 6.00<br>6.00    | 0.65         |           |                       |
|            | VPAG017            | 7194407            | 663598           | 525               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.94         |           |                       |
|            | VPAG018            | 7194402            | 663584           | 525               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.21         |           |                       |
|            | VPAG019            | 7194396            | 663569           | 524               | -90        | 6.00          | 2.00        | 6.00          | 4.00            | 0.17         |           |                       |
|            | VPAG020            | 7194388            | 663554           | 524               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.30         |           |                       |
|            | VPAG021<br>VPAG022 | 7194381<br>7194373 | 663541<br>663530 | 524<br>524        | -90<br>-90 | 6.00<br>6.00  | 0.00        | 6.00<br>6.00  | 6.00<br>6.00    | 0.31 0.13    |           |                       |
|            | VPAG022<br>VPAG023 | 7194367            | 663519           | 525               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.13         |           |                       |
|            | VPAG024            | 7194348            | 663527           | 525               | -90        | 4.60          | 0.00        | 4.60          | 4.60            | 0.12         |           |                       |
|            | VPAG025            | 7194334            | 663535           | 525               | -90        | 2.00          | 0.00        | 2.00          | 2.00            | 0.05         |           |                       |
|            | VPAG026            | 7194317            | 663543           | 525               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.40         |           |                       |
|            | VPAG027            | 7194300            | 663552           | 524               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.57         |           |                       |
|            | VPAG028<br>VPAG029 | 7194275<br>7194257 | 663566<br>663572 | 524<br>524        | -90<br>-90 | 1.20<br>6.00  | 0.00        | 1.20<br>6.00  | 1.20<br>6.00    | 2.72<br>0.38 |           |                       |
|            | VPAG030            | 7194237            | 663580           | 524               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.37         |           |                       |
|            | VPAG031            | 7194221            | 663588           | 524               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.21         |           |                       |
|            | VPAG032            | 7194207            | 663593           | 524               | -90        | 2.00          | 0.00        | 2.00          | 2.00            | 0.27         |           |                       |
|            | VPAG033            | 7194189            | 663607           | 523               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.25         |           |                       |
|            | VPAG034            | 7194401            | 663621           | 525               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.58         |           |                       |
|            | VPAG035<br>VPAG036 | 7194382            | 663631           | 524<br>524        | -90<br>-90 | 6.90<br>4.00  | 0.00        | 6.90<br>4.00  | 6.90<br>4.00    | 0.60         |           |                       |
|            | VPAG036<br>VPAG037 | 7194360<br>7194337 | 663642<br>663652 | 524               | -90        | 2.00          | 0.00        | 2.00          | 2.00            | 0.40         |           |                       |
|            | VPAG037<br>VPAG038 | 7194337            | 663660           | 523               | -90        | 6.70          | 0.00        | 6.70          | 6.70            | 1.84         | 1         | t                     |
|            | VPAG039            | 7194284            | 663673           | 524               | -90        | 2.80          | 0.00        | 2.80          | 2.80            | 0.62         |           |                       |
|            | VPAG040            | 7194268            | 663680           | 524               | -90        | 3.60          | 0.00        | 3.60          | 3.60            | 1.28         |           | [                     |
|            | VPAG041            | 7194248            | 663687           | 524               | -90        | 1.50          | 0.00        | 1.50          | 1.50            | 0.43         |           |                       |
|            | VPAG042<br>VPAG043 | 7194231<br>7194214 | 663694<br>663829 | 524               | -90<br>-90 | 3.00          | 0.00        | 3.00          | 3.00            | 0.28         |           | ł                     |
|            | VPAG043<br>VPAG044 | 7194214<br>7194235 | 663829           | 516<br>518        | -90        | 2.00<br>2.50  | 0.00        | 2.00<br>2.00  | 2.00<br>2.00    | 0.84         |           |                       |
|            | VPAG045            | 7194263            | 663812           | 520               | -90        | 5.00          | 0.00        | 5.00          | 5.00            | 0.35         |           |                       |
|            | VPAG046            | 7194285            | 663801           | 520               | -90        | 7.00          | 0.00        | 7.00          | 7.00            | 0.30         |           |                       |
|            | VPAG047            | 7194307            | 663790           | 520               | -90        | 5.00          | 0.00        | 5.00          | 5.00            | 0.20         |           |                       |
|            | VPAG048            | 7194328            | 663782           | 519               | -90        | 5.00          | 0.00        | 5.00          | 5.00            | 0.56         |           |                       |
|            | VPAG049            | 7194359            | 663770           | 521               | -90        | 2.30          | 0.00        | 2.00          | 2.00            | 0.20         |           |                       |
|            | VPAG050<br>VPAG051 | 7194387<br>7194407 | 663758<br>663747 | 521<br>521        | -90<br>-90 | 6.30<br>4.50  | 0.00        | 6.30<br>4.50  | 6.30<br>4.50    | 0.48         |           |                       |
|            | VPAG051<br>VPAG052 | 7194407            | 663736           | 521               | -90        | 4.60          | 0.00        | 4.60          | 4.50            | 1.32         |           |                       |
|            | VPAG053            | 7194457            | 663725           | 521               | -90        | 5.60          | 0.00        | 5.60          | 5.60            | 1.22         |           |                       |
|            | VPAG054            | 7194480            | 663711           | 521               | -90        | 4.00          | 0.00        | 4.00          | 4.00            | 0.64         |           |                       |
|            | VPAG055            | 7194503            | 663702           | 521               | -90        | 2.70          | 0.00        | 2.00          | 2.00            | 0.34         |           |                       |
|            | VPAG056            | 7194528            | 663692           | 521               | -90        | 4.50          | 0.00        | 4.50          | 4.50            | 0.41         |           |                       |
|            | VPAG057<br>VPAG058 | 7194552<br>7194542 | 663678<br>663653 | 521<br>521        | -90<br>-90 | 4.00<br>4.00  | 0.00        | 4.00<br>4.00  | 4.00<br>4.00    | 0.25         |           |                       |
|            | VPAG059            | 7194535            | 663637           | 521               | -90        | 5.50          | 0.00        | 5.50          | 5.50            | 1.17         |           |                       |
|            | VPAG060            | 7194529            | 663621           | 521               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 1.14         |           |                       |
|            | VPAG061            | 7194523            | 663604           | 521               | -90        | 5.70          | 0.00        | 5.70          | 5.70            | 0.82         |           |                       |
|            | VPAG062            | 7194517            | 663588           | 521               | -90        | 5.00          | 0.00        | 5.00          | 5.00            | 0.47         |           |                       |
|            | VPAG063            | 7194002            | 663661           | 527               | -90        | 5.30          | 0.00        | 5.30          | 5.30            | 0.09         | 0.09      |                       |
|            | VPAG064<br>VPAG065 | 7194018<br>7194032 | 663710<br>663760 | 528<br>528        | -90<br>-90 | 3.00<br>4.70  | 0.00        | 3.00<br>4.70  | 3.00<br>4.70    | 0.08         | 0.15 0.21 |                       |
|            | VPAG066            | 7194032            | 663810           | 527               | -90        | 5.60          | 0.00        | 5.60          | 5.60            | 0.09         | 0.21      |                       |
|            | VPAG069            | 7194089            | 663949           | 526               | -90        | 3.00          | 0.00        | 3.00          | 3.00            | 0.36         | 0.62      |                       |
|            | VPAG070            | 7194102            | 664000           | 524               | -90        | 6.30          | 0.00        | 6.00          | 6.00            | 0.05         | 0.14      |                       |
|            | VPAG071            | 7194114            | 664050           | 524               | -90        | 8.30          | 0.00        | 8.30          | 8.30            | 0.08         | 0.14      |                       |
|            | VPAG072            | 7194125            | 664100           | 524               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.06         | 0.13      |                       |
|            | VPAG073<br>VPAG075 | 7194141<br>7194167 | 664152<br>664250 | <u>524</u><br>524 | -90<br>-90 | 2.00<br>10.00 | 0.00        | 2.00<br>10.00 | 2.00<br>10.00   | 0.04         | 0.09      |                       |
|            | VPAG076            | 7194178            | 664300           | 524               | -90        | 2.50          | 0.00        | 2.50          | 2.50            | 0.14         | 0.20      |                       |
|            | VPAG080            | 7194003            | 664378           | 523               | -90        | 10.00         | 0.00        | 10.00         | 10.00           | 0.22         | 0.28      |                       |
|            | VPAG083            | 7193849            | 664422           | 523               | -90        | 10.00         | 0.00        | 10.00         | 10.00           | 0.23         | 0.23      |                       |
| 2          | VPAG084            | 7193808            | 664380           | 524               | -90        | 2.70          | 0.00        | 2.70          | 2.70            | 0.06         | 0.13      |                       |
|            | VPAG085            | 7193798            | 664331           | 524               | -90        | 7.00          | 0.00        | 7.00          | 7.00            | 0.11         | 0.17      |                       |
| Tails      | VPAG086<br>VPAG087 | 7193784<br>7193763 | 664280<br>664233 | 524<br>524        | -90<br>-90 | 7.10<br>6.00  | 0.00        | 7.10<br>6.00  | 7.10<br>6.00    | 0.19 0.27    | 0.30 0.08 |                       |
| Perimeter  | VPAG088            | 7193749            | 664181           | 524               | -90        | 5.00          | 0.00        | 5.00          | 5.00            | 0.05         | 0.09      |                       |
|            | VPAG090            | 7193719            | 664079           | 524               | -90        | 2.00          | 0.00        | 2.00          | 2.00            | 0.02         | 0.09      |                       |
|            | VPAG091            | 7193753            | 664037           | 524               | -90        | 5.00          | 0.00        | 5.00          | 5.00            | 0.42         | 0.14      |                       |
|            | VPAG092            | 7193812            | 664017           | 528               | -90        | 2.00          | 0.00        | 2.00          | 2.00            | 0.11         | 0.19      |                       |
|            | VPAG093<br>VPAG094 | 7193863<br>7193919 | 664002<br>663988 | 528<br>528        | -90<br>-90 | 5.10<br>4.00  | 0.00        | 5.10<br>4.00  | 5.10<br>4.00    | 0.11 0.13    | 0.16 0.11 |                       |
|            | VPAG094<br>VPAG095 | 7193970            | 663975           | 528               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.13         | 0.38      |                       |
|            | VPAG096            | 7194021            | 663960           | 528               | -90        | 4.50          | 0.00        | 4.50          | 4.50            | 0.20         | 0.17      |                       |
|            | VPAG097            | 7193777            | 663959           | 528               | -90        | 4.50          | 0.00        | 4.50          | 4.50            | 0.06         | 0.17      |                       |
|            | VPAG098            | 7193759            | 663900           | 528               | -90        | 6.00          | 0.00        | 6.00          | 6.00            | 0.18         | 0.15      |                       |
|            | VPAG099            | 7193744            | 663843           | 528               | -90        | 2.00          | 0.00        | 2.00          | 2.00            | 0.15         | 0.45      |                       |
|            | VPAG100            | 7193725            | 663787<br>663730 | 528               | -90        | 1.60          | 0.00        | 1.60          | 1.60            | 0.08         | 0.09      |                       |
|            | VPAG101<br>VPAG102 | 7193759<br>7193800 | 663739<br>663707 | 528<br>528        | -90<br>-90 | 3.00<br>4.30  | 0.00        | 3.00<br>4.30  | 3.00<br>4.30    | 0.16         | 0.09 0.23 |                       |
|            | VPAG102<br>VPAG103 | 7193854            | 663685           | 528               | -90        | 1.50          | 0.00        | 1.50          | 1.50            | 0.04         | 0.23      |                       |
|            | VPAG104            | 7193908            | 663666           | 527               | -90        | 4.40          | 0.00        | 4.40          | 4.40            | 0.21         | 0.07      |                       |
|            | VPAG105            | 7193960            | 663652           | 527               | -90        | 1.20          | 0.00        | 1.20          | 1.20            | 0.43         | 0.44      |                       |
|            | FTAG002            | 7193877            | 664171           | 521               | -90        | 7.00          | 0.00        | 7.30          | 7.30            | 0.23         | 0.14      |                       |
| Floatation | FTAG003            | 7193927            | 664155           | 521               | -90        | 7.30          | 0.00        | 7.60          | 7.60            | 0.27         | 0.16      |                       |
| Tails Dam  | FTAG004<br>FTAG001 | 7193978<br>7194026 | 664139<br>664124 | 521<br>521        | -90<br>-90 | 7.60<br>7.70  | 0.00        | 7.70<br>7.00  | 7.70<br>7.00    | 0.29         | 0.31 0.29 | <u> </u>              |

Table 5: C20 Stockpile RC Drilling summary results: Interval of >/= 1m >/=0.3 g/t Au, or 0.3% Cu, 2m internal wasteNB: C20 results assayed by Nagrom Method ICP008- 40gram charge Aqua Regia Digest for Copper Gold only, with ICP finish

Au >= 0.3g/t Au

| Site ID    | East   | North   | RL  | Depth | Dip | From | То   | Length | Au<br>g/t | Cu %   |
|------------|--------|---------|-----|-------|-----|------|------|--------|-----------|--------|
| C20_RC1    | 663293 | 7194300 | 533 | 5.0   | -90 |      |      | NSI    | 8/*       |        |
| C20_RC2    | 663303 | 7194303 | 533 | 6.0   | -90 | 0.0  | 5.0  | 5.0    | 0.52      | 0.18   |
| C20_RC3    | 663312 | 7194306 | 534 | 7.0   | -90 | 1.0  | 5.0  | 4.0    | 0.36      | 0.09   |
| C20_RC4    | 663322 | 7194310 | 534 | 7.0   | -90 | 1.0  | 2.0  | 1.0    | 0.34      | 0.31   |
|            |        |         |     |       |     | 4.0  | 5.0  | 1.0    | 0.36      | 0.19   |
| C20_RC5    | 663331 | 7194313 | 534 | 8.0   | -90 | 0.0  | 8.0  | 8.0    | 1.04      | 1.10   |
| C20_RC6    | 663339 | 7194317 | 534 | 8.0   | -90 | 0.0  | 8.0  | 8.0    | 0.55      | 0.29   |
| C20_RC7    | 663350 | 7194319 | 534 | 9.0   | -90 | 0.0  | 9.0  | 9.0    | 0.83      | 0.16   |
| C20_RC8    | 663358 | 7194323 | 534 | 10.0  | -90 | 1.0  | 10.0 | 9.0    | 1.69      | 0.40   |
| C20_RC17   | 663287 | 7194319 | 533 | 6.0   | -90 | 0.0  | 1.0  | 1.0    | 3.10      | 0.12   |
| C20_RC18   | 663297 | 7194322 | 534 | 6.0   | -90 | 0.0  | 4.0  | 4.0    | 1.40      | 0.22   |
| C20_RC19   | 663306 | 7194326 | 534 | 7.0   | -90 | 0.0  | 5.0  | 5.0    | 1.03      | 0.43   |
| C20_RC20   | 663316 | 7194329 | 534 | 8.0   | -90 | 1.0  | 4.0  | 3.0    | 0.37      | 0.40   |
| C20_RC21   | 663325 | 7194332 | 534 | 8.0   | -90 | 0.0  | 6.0  | 6.0    | 1.20      | 0.16   |
| C20_RC22   | 663335 | 7194335 | 534 | 9.0   | -90 | 2.0  | 7.0  | 5.0    | 1.11      | 0.07   |
| C20_RC23   | 663344 | 7194338 | 534 | 10.0  | -90 | 0.0  | 9.0  | 9.0    | 1.33      | 0.19   |
| C20_RC31   | 663346 | 7194359 | 534 | 10.0  | -90 | 0.0  | 6.0  | 6.0    | 0.40      | 0.38   |
| C20_RC32   | 663338 | 7194357 | 534 | 9.0   | -90 | 0.0  | 5.0  | 5.0    | 0.49      | 0.12   |
| C20_RC33   | 663329 | 7194354 | 534 | 9.0   | -90 | 0.0  | 4.0  | 4.0    | 0.44      | 0.43   |
| C20_RC34   | 663319 | 7194351 | 534 | 8.0   | -90 |      |      | NSI    |           |        |
| C20_RC35   | 663310 | 7194348 | 534 | 7.0   | -90 | 0.0  | 3.0  | 3.0    | 0.36      | 0.29   |
| C20_RC36   | 663300 | 7194345 | 534 | 6.0   | -90 | 0.0  | 1.0  | 1.0    | 0.58      | 0.23   |
| C20_RC37   | 663291 | 7194342 | 534 | 6.0   | -90 | 0.0  | 1.0  | 1.0    | 0.78      | 1.90   |
| C20_RC38   | 663281 | 7194338 | 534 | 5.0   | -90 | 0.0  | 1.0  | 1.0    | 1.94      | 0.09   |
| C20_RC46   | 663332 | 7194376 | 534 | 8.0   | -90 | 0.0  | 3.0  | 3.0    | 2.54      | 0.73   |
| C20_RC47   | 663323 | 7194373 | 534 | 7.0   | -90 | 0.0  | 4.0  | 4.0    | 0.51      | 0.28   |
| C20_RC48   | 663313 | 7194370 | 534 | 6.0   | -90 | 3.0  | 4.0  | 1.0    | 0.99      | 0.16   |
| C20_RC49   | 663304 | 7194367 | 534 | 5.0   | -90 | 0.0  | 1.0  | 1.0    | 1.02      | 1.79   |
| C20_RC50   | 663289 | 7194361 | 534 | 4.0   | -90 | 0.0  | 2.0  | 2.0    | 0.33      | 0.12   |
| Cu >= 0.3% | 6      |         |     |       |     |      |      |        |           |        |
| Site ID    | East   | North   | RI  | Depth | Dip | From | То   | Length | Cu %      | Au g/t |
| C20_RC1    | 663293 | 7194300 | 533 | 5.0   | -90 |      |      | NSI    |           |        |
| C20_RC2    | 663303 | 7194303 | 533 | 6.0   | -90 |      |      | NSI    |           |        |

| - | Site ID  | East   | North   | RI  | Depth | Dip | From                 | То  | Length | Cu % | Au g/t |
|---|----------|--------|---------|-----|-------|-----|----------------------|-----|--------|------|--------|
|   | C20_RC1  | 663293 | 7194300 | 533 | 5.0   | -90 | NSI                  |     |        |      |        |
|   | C20_RC2  | 663303 | 7194303 | 533 | 6.0   | -90 | NSI                  |     |        |      |        |
|   | C20_RC3  | 663312 | 7194306 | 534 | 7.0   | -90 | NSI                  |     |        |      |        |
|   | C20_RC4  | 663322 | 7194310 | 534 | 7.0   | -90 | 1.0                  | 2.0 | 1.0    | 0.31 | 0.34   |
|   | C20_RC5  | 663331 | 7194313 | 534 | 8.0   | -90 | 0.0                  | 5.0 | 5.0    | 1.60 | 1.19   |
|   | C20_RC6  | 663339 | 7194317 | 534 | 8.0   | -90 | 0.0 5.0 5.0 0.38 0.6 |     |        |      | 0.63   |
|   | C20_RC7  | 663350 | 7194319 | 534 | 9.0   | -90 | 0.0                  | 1.0 | 1.0    | 0.33 | 0.53   |
|   | C20_RC8  | 663358 | 7194323 | 534 | 10.0  | -90 | 1.0                  | 9.0 | 8.0    | 0.43 | 1.84   |
|   | C20_RC17 | 663287 | 7194319 | 533 | 6.0   | -90 | NSI                  |     |        |      |        |

|                        | 0.00.12                                                                       |                                                                  |
|------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|
|                        | C20_RC18                                                                      | 663297                                                           |
|                        | C20_RC19                                                                      | 663306                                                           |
|                        | C20_RC20                                                                      | 663316                                                           |
|                        | C20_RC21                                                                      | 663325                                                           |
|                        | C20_RC22                                                                      | 663335                                                           |
| Ē                      | C20_RC23                                                                      | 663344                                                           |
|                        | C20_RC31                                                                      | 663346                                                           |
| C                      | C20_RC32                                                                      | 663338                                                           |
|                        | C20_RC33                                                                      | 663329                                                           |
|                        | C20_RC34                                                                      | 663319                                                           |
| a                      | C20_RC35                                                                      | 663310                                                           |
| UL                     | C20_RC36                                                                      | 663300                                                           |
| AR                     | C20_RC37                                                                      | 663291                                                           |
| $\bigcup_{\mathbf{I}}$ | C20_RC38                                                                      | 663281                                                           |
|                        | C20_RC46                                                                      | 663332                                                           |
|                        | C20_RC47                                                                      | 663323                                                           |
|                        | C20_RC48                                                                      | 663313                                                           |
|                        | C20_RC49                                                                      | 663304                                                           |
|                        | C20_RC50                                                                      | 663289                                                           |
|                        | About Horse<br>Horseshoe M<br>approximately<br>and mineral in<br>Western Aust | etals Limit<br>v 500km² ir<br>nterests in v                      |
|                        | 118°E                                                                         |                                                                  |
|                        |                                                                               | Operating mine<br>Closed mine<br>Prospect<br>Au<br>Au / Cu<br>Cu |
|                        | Hi                                                                            | ORSESH(<br>storic produc<br>urrent resource                      |
|                        |                                                                               |                                                                  |

| Site ID  | East   | North   | RL  | Depth | Dip | From | То  | Length | Au<br>g/t | Cu % |
|----------|--------|---------|-----|-------|-----|------|-----|--------|-----------|------|
| C20_RC18 | 663297 | 7194322 | 534 | 6.0   | -90 | 2.0  | 3.0 | 1.0    | 0.45      | 4.09 |
| C20_RC19 | 663306 | 7194326 | 534 | 7.0   | -90 | 3.0  | 7.0 | 4.0    | 0.54      | 0.78 |
| C20_RC20 | 663316 | 7194329 | 534 | 8.0   | -90 | 1.0  | 5.0 | 4.0    | 0.43      | 0.30 |
| C20_RC21 | 663325 | 7194332 | 534 | 8.0   | -90 | 0.0  | 1.0 | 1.0    | 0.34      | 0.31 |
| C20_RC22 | 663335 | 7194335 | 534 | 9.0   | -90 |      |     | NSI    |           |      |
| C20_RC23 | 663344 | 7194338 | 534 | 10.0  | -90 | 1.0  | 2.0 | 1.0    | 0.37      | 0.67 |
| C20_RC31 | 663346 | 7194359 | 534 | 10.0  | -90 | 1.0  | 3.0 | 2.0    | 0.81      | 0.20 |
| C20_RC32 | 663338 | 7194357 | 534 | 9.0   | -90 |      |     | NSI    |           |      |
| C20_RC33 | 663329 | 7194354 | 534 | 9.0   | -90 | 0.0  | 3.0 | 3.0    | 0.49      | 0.40 |
| C20_RC34 | 663319 | 7194351 | 534 | 8.0   | -90 |      |     | NSI    |           |      |
| C20_RC35 | 663310 | 7194348 | 534 | 7.0   | -90 | 1.0  | 3.0 | 2.0    | 0.32      | 0.34 |
| C20_RC36 | 663300 | 7194345 | 534 | 6.0   | -90 |      |     | NSI    |           |      |
| C20_RC37 | 663291 | 7194342 | 534 | 6.0   | -90 | 0.0  | 2.0 | 2.0    | 1.16      | 0.48 |
| C20_RC38 | 663281 | 7194338 | 534 | 5.0   | -90 |      |     | NSI    |           |      |
| C20_RC46 | 663332 | 7194376 | 534 | 8.0   | -90 | 0.0  | 3.0 | 3.0    | 0.73      | 2.54 |
| C20_RC47 | 663323 | 7194373 | 534 | 7.0   | -90 | 0.0  | 3.0 | 3.0    | 0.31      | 0.57 |
| C20_RC48 | 663313 | 7194370 | 534 | 6.0   | -90 |      |     | NSI    |           |      |
| C20_RC49 | 663304 | 7194367 | 534 | 5.0   | -90 | 0.0  | 1.0 | 1.0    | 1.79      | 1.02 |
| C20_RC50 | 663289 | 7194361 | 534 | 4.0   | -90 |      |     | NSI    |           |      |

#### tals Limited

ted (ASX:HOR) is a copper and gold-focused Company with a package of tenements covering n the highly prospective Peak Hill Mineral Field, located north of Meekatharra in Western Australian South Australia. The Company manages the Horseshoe Lights Project and the Kumarina Project in he Glenloth Gold Project in South Australia.

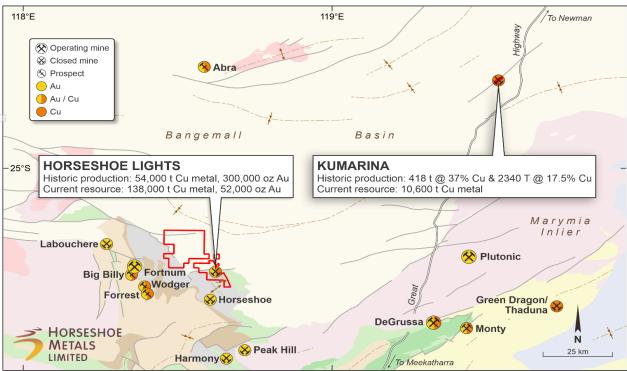



Figure 6: Location of Horseshoe Lights Copper-Gold Project and Kumarina Project in the Murchison, WA

#### About the Horseshoe Lights Project

The Horseshoe Lights Project includes the historic open pit of the Horseshoe Lights copper-gold mine which operated up until 1994, producing over 300,000 ounces of gold and 54,000 tonnes of contained copper including over 110,000 tonnes of Direct Shipping Ore (DSO) which graded between 20-30% copper.

The Horseshoe Lights ore body is interpreted as a deformed Volcanogenic Hosted Massive Sulphide (VMS) deposit that has undergone supergene alteration to generate the gold-enriched and copper-depleted cap that was the target of initial mining. The deposit is hosted by quartz-sericite and quartz-chlorite schists of the Lower Proterozoic Narracoota Formation.

Past mining was focused on the Main Zone, a series of lensoid ore zones, which passed with depth from a gold-rich oxide zone through zones of high-grade chalcocite mineralisation into massive pyrite-chalcopyrite. To the west and east of the Main Zone, copper mineralisation in the Northwest Stringer Zone and Motters Zone consists of veins and disseminations of chalcopyrite and pyrite and their upper oxide copper extensions. Table 6 summarises the total Mineral Resources for the Horseshoe Lights Project as at 30 June 2021.

|                       | TABLE 6<br>HORSESHOE LIGHTS PROJECT<br>SUMMARY OF MINERAL RESOURCES<br>AS AT 30 June 2021    |        |       |      |     |         |        |       |  |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------|--------|-------|------|-----|---------|--------|-------|--|--|--|--|--|
| Location              | LocationCategoryTonnesCuAuAgCu metalAu metalAg metal(Mt)(%)(g/t)(g/t)(g/t)(tonnes)(oz)(k oz) |        |       |      |     |         |        |       |  |  |  |  |  |
| In-situ               | Measured                                                                                     | 18,000 | 1,900 | 28.8 |     |         |        |       |  |  |  |  |  |
| Deposit               | Indicated                                                                                    | 2.43   | 0.95  | 0.0  | 0.7 | 23,200  | 3,400  | 52.2  |  |  |  |  |  |
| (0.5% Cu              | Inferred                                                                                     | 8.69   | 1.01  | 0.1  | 2.6 | 87,400  | 30,700 | 712.4 |  |  |  |  |  |
| cut-off<br>grade)     | Total                                                                                        | 12.85  | 1.00  | 0.1  | 1.9 | 128,600 | 36,000 | 793.4 |  |  |  |  |  |
| Flotation<br>Tailings | Inferred 1 421 0 48 0 34 65 6800 15 300 294 8                                                |        |       |      |     |         |        |       |  |  |  |  |  |
| M15<br>Stockpiles     | Inferred 0.243 1.10 0.17 4.7 2.650 1.300 36.7                                                |        |       |      |     |         |        |       |  |  |  |  |  |
|                       | Note: At 0% Cu cut-off grade unless<br>otherwise statedTOTAL138,05052,6001,124.9             |        |       |      |     |         |        |       |  |  |  |  |  |

The above Mineral Resource Estimates all meet the reporting requirements of the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

#### About the Kumarina Project

The copper deposits at the Kumarina Project were discovered in 1913 and worked intermittently until 1973. The workings extend over nearly 5km as a series of pits, shafts and shallow open cuts. At the main Kumarina Copper Mine, the workings are entirely underground with drives from the main shaft extending for some 200m in the upper levels and for about 100m in the lower levels at a depth of 49m below surface.

Incomplete records post-1960s make it difficult to estimate the total copper production from the workings. However, indications are that the Kumarina Copper Mine was the second largest producer in the Bangemall Basin group of copper mines. Recorded production to the late 1960s is 481t of copper ore at a high-grade of 37.0% Cu and 2,340t at a grade of 17.51% Cu. An initial Mineral Resource Estimate for the Rinaldi deposit was completed by the Company in 2013 (see 30 June 2013 Quarterly Report announced on 31 July 2013). The total Measured, Indicated and Inferred Mineral Resource Estimate as at 30 June 2021 is shown in Table 7 below.

|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                           | SUMMARY OI                                                                                                                                                                                       | ARINA PROJECT<br>F MINERAL RESC<br>T 30 June 2021                                                                                                                                   | OURCES                                                                                                                                                                   |                                                                                                                                                                       |                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                           | Location                                                                                                                                                                                                                                                                                                                                  | Category                                                                                                                                                                                         | Tonnes<br>(t)                                                                                                                                                                       | Cu<br>(%)                                                                                                                                                                | Cu metal<br>(tonnes)                                                                                                                                                  |                                                                                                                                                  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                           | Measured                                                                                                                                                                                         | 415,000                                                                                                                                                                             | 1.46                                                                                                                                                                     | 6,100                                                                                                                                                                 |                                                                                                                                                  |
|                                                                                                                                           | Rinaldi Prospect                                                                                                                                                                                                                                                                                                                          | Indicated                                                                                                                                                                                        | 307,000                                                                                                                                                                             | 1.16                                                                                                                                                                     | 3,500                                                                                                                                                                 |                                                                                                                                                  |
|                                                                                                                                           | (0.5% Cu cut-off)                                                                                                                                                                                                                                                                                                                         | Inferred                                                                                                                                                                                         | 114,000                                                                                                                                                                             | 0.9                                                                                                                                                                      | 1,000                                                                                                                                                                 |                                                                                                                                                  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                           | Total                                                                                                                                                                                            | 835,000                                                                                                                                                                             | 1.3                                                                                                                                                                      | 10,600                                                                                                                                                                |                                                                                                                                                  |
|                                                                                                                                           | irces and Ore Reserves"                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                       |                                                                                                                                                  |
| Horseshoe Me<br>as to the fairne<br>extent permitt<br>without limitar<br>announcemen<br>with respect to<br>or commitmer<br>mining and pro | oking Statements<br>tals Limited has prepared this a<br>ess, accuracy, completeness o<br>ed by law, none of Horseshoe I<br>tion, any liability arising from<br>t or its contents or otherwise a<br>to the subscription for, purchas<br>at whatsoever. This announce<br>oduction businesses. It is belie<br>and changes in underlying assi | r correctness of the info<br>Metals Limited, its direc<br>fault or negligence on<br>rising in connection wit<br>te or sale of any security<br>ment may contain forw<br>eved that the expectation | ormation, opinions and<br>ctors, employees or age<br>the part of any of the<br>h it. This announceme<br>y, and neither this anno<br>ard-looking statement<br>ons reflected in these | d conclusions contain<br>ents, advisers, nor ar<br>ent or any other per<br>nt is not an offer, invo<br>ouncement nor any<br>s that are subject to<br>statements are reas | ned in this announcem<br>ay other person accepts<br>son, for any loss arisin<br>vitation, solicitation or o<br>thing in it shall form the<br>prisk factors associated | ent. To the maximum<br>any liability, includin<br>g from the use of th<br>ther recommendation<br>e basis of any contra-<br>with gold exploration |

statements that are subject to risk factors associated with gold exploration, d in these statements are reasonable but they may be affected by a variety al results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

TABLE 7

#### **Competent Persons Statement**

The information in this report that relates to the Exploration Results and Mineral Resources at the Horseshoe Lights and Kumarina Projects is based on information reviewed by Mr Craig Hall, who is a member of the Australian Institute of Geoscientists. Mr Hall is a contractor to Horseshoe Metals Limited and has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activity he is undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)'. Mr Hall consents to the inclusion of the data in the form and context in which it appears.

The information in this report that relates to the Horseshoe Lights Project In-situ Mineral Resources is based on information originally compiled by Mr Dmitry Pertel, an employee of CSA Global Pty Ltd, and reviewed by Mr Hall. This information was originally issued in the Company's ASX announcement "40% increase in Copper Resource at Horseshoe Lights Copper/Gold Project", released to the ASX on 5 June 2013, and first disclosed under the JORC Code 2004. This information was subsequently disclosed under the JORC Code 2012 in the Company's ASX release "Quarterly Report Period Ended 30 June 2013", released on 31 July 2013. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the findings are presented have not materially modified from the original market announcements.

The information in this report that relates to the Horseshoe Lights Project surface stockpile Mineral Resources is based on information compiled by a previous employee of Horseshoe Metals Limited and reviewed by Mr Hall. The information was previously issued in announcements released to the ASX on 26 February 2015 and 9 March 2015. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the findings are presented have not materially modified from the original market announcements.

The information in this report that relates to the Kumarina Project (Rinaldi Prospect) Mineral Resources is based on information compiled by or under the supervision of Mr Robert Spiers, an independent consultant to Horseshoe Metals Limited and a then full-time employee and Director of H&S Consultants Pty Ltd (formerly Hellman & Schofield Pty Ltd), and reviewed by Mr Hall. The information was originally issued in the Company's ASX announcement "Horseshoe releases Maiden Mineral Resource Estimate for Kumarina", released to the ASX on 4 March 2013, and first disclosed under the JORC Code 2004. This information was subsequently disclosed under the JORC Code 2012 in the Company's ASX release "Quarterly Report Period Ended 30 June 2013", released on 31 July 2013. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the findings are presented have not materially modified from the original market announcements

## JORC CODE, 2012 EDITION

### Section 1 Sampling Techniques and Data

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific<br/>specialised industry standard measurement tools appropriate to the minerals<br/>under investigation, such as down hole gamma sondes, or handheld XRF<br/>instruments, etc). These examples should not be taken as limiting the broad<br/>meaning of sampling.</li> </ul>                                                     | <ul> <li>HOR 2021 RC Drilling- samples were collected to best represent the source material. Samples were sent to Nagrom Perth for Au analysis by ICP-OES (Method ICP-008), 50g charge with a lower detection limit of 0.00 ppm NAGROM method – ICP008; 40gm Aqua Regia Digest- suite included AAu, Ag, Ca, Cu, Fe, Hg, Mg, Pb, S Se and Zn. Samples were pre-screened at hole for Cu for subsequent assay by portable XRF.</li> <li>HOR 2021 Auger drilling- samples were collected by spiral auger bit and shafts with flights 3 ½ "in diameter. Samples were collected every metre from a collared liner base of around 50cm x 40cm, into a large labelled plastic bag, and the base swept clean before proceeding with the next metre. Sub-sampling into numbered calico bag was via an aluminium scoop collecting around 500-750gm of sample from the plastic bag, which was retained at the hole over the collar. The historical 1985 RC Vat sampling programme was undertaken by truck mounted Mole Pioneer drilling rig owned and operated by Sanfead Drilling Contractors in Perth, using modified rotary drill with blade bit. Samples were collected ever 2m within holes up to 6m deep, except 3 holes in Vat 3 which were sampled every 1m.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5                        | <ul> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be</li> </ul>                                                                                | <ul> <li>HOR 2021 RC Drilling - Portable Niton XRF used to select sample intervals, internal checks utilised</li> <li>HOR 2021 Auger drilling Depth control was at the decimetre level, with depth checked against a metre stick</li> <li>HOR 2021 RC Drilling -undertaken as industry standard reverse circulation drilling, with 1m samples were sp from the cyclone, with residual sample collected in plastic bags</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D                        | relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples<br>from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other<br>cases more explanation may be required, such as where there is coarse gold that<br>has inherent sampling problems. Unusual commodities or mineralisation types (eg<br>submarine nodules) may warrant disclosure of detailed information. | <ul> <li>HOR 2021 Auger drilling was undertaken by experienced contractors Gyro Australia and is considered indus<br/>standard with a geochemical auger rig used to obtain 1 m samples of 5-10kg from a vertical auger hole of le<br/>than 6m in this instance. Sub samples of 500-750gm were taken via scoop and pulverised at the laboratory<br/>produce a 50 g charge for fire assay analysis for gold only. The historical 1985 RC Vat sampling programme<br/>was considered industry standard at the time, with samples split on site by drillers and sent to Perth for<br/>analysis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Drilling<br>techniques   | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger,<br/>Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of<br/>diamond tails, face-sampling bit or other type, whether core is oriented and if so,</li> </ul>                                                                                                                            | <ul> <li>HOR 2021 RC Drilling - was undertaken as industry standard reverse circulation drilling, with iDrilling<br/>completing work with a UDR450 track mounted rig and separate 900/1150 booster. Face-sampling drill bit<br/>size was 140mm</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>HOR 2021 Auger drilling was completed using a Landcruiser mounted post-hole style auger, capable of at least 10m drill depths. Hole diameters were 3.5". The historical 1985 RC Vat sampling programme was undertake by a truck mounted Mole Pioneer drilling rig, using a modified rotary drill with blade bit. Size of bit not state the same struct was a struct when the same struct were the same struct with the same struct were struct with the same struct were struct with the same struct were struct were struct were struct with the same struct were struct were struct were struct when the same struct were struct were struct were struct were struct when the same struct were struct were struct were struct were struct when the same struct were struct</li></ul> |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results<br/>assessed.</li> </ul>                                                                                                                                                                                                                                                                                                      | <ul> <li>HOR 2021 RC Drilling- Visual inspection of the RC sample volume indicates sample recovery is excellent</li> <li>HOR 2021 Auger drilling -Visual inspection of the auger sample volume indicates sample recovery is excelle</li> <li>HOR 2021 RC Drilling -all samples drilled dry with minimal clayey component. All RC samples samples are</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D                        | • Measures taken to maximise sample recovery and ensure representative nature of the samples.                                                                                                                                                                                                                                                                                                                        | <ul> <li>visually checked for recovery, moisture and contamination</li> <li>HOR 2021 Auger drilling -Visual inspection of the auger sample volume indicates sample recovery is excelle<br/>1985 RC Vat sampling programme- stated as 'satisfactory'. Auger samples are visually checked for recovery<br/>moisture and contamination. Hole sides were conditioned where possible, and sample bases cleaned befor<br/>proceeding. 1985 RC Vat sampling programme- not known.</li> <li>HOR 2021 RC Drilling - No potential for sample bias was observed, with no fine/coarse separation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15                       | <ul> <li>Whether a relationship exists between sample recovery and grade and whether<br/>sample bias may have occurred due to preferential loss/gain of fine/coarse<br/>material.</li> </ul>                                                                                                                                                                                                                         | <ul> <li>HOR 2021 Auger drilling -Ground conditions for auger drilling are good and drilling returned consistent size<br/>samples. No potential for sample bias was observed, with no fine/coarse separation. 1985 RC Vat sampling<br/>programme- not known</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Criteria               | JORC Code explanation                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                | • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining                                     | <ul> <li>HOR 2021 RC Drilling - logged to a level to support appropriate Mineral Resource estimation, mining studies<br/>and metallurgical studies. C20 stockpiles not logged</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | studies and metallurgical studies.                                                                                                                                                                   | <ul> <li>HOR 2021 Auger drilling Not logged as leached Vat material is relatively homogenous. All material and<br/>sampling viewed and overseen by senior geologist. 1985 RC Vat sampling programme- not known</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | • Whether logging is qualitative or quantitative in nature. Core (or costean, channel,                                                                                                               | <ul> <li>HOR 2021 RC Drilling logged to a level to support appropriate Mineral Resource estimation, mining studie</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | etc) photography.                                                                                                                                                                                    | and metallurgical studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                      | • HOR 2021 Auger drilling - N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | • The total length and percentage of the relevant intersections logged.                                                                                                                              | HOR 2021 RC Drilling All drilling logged to a level to support appropriate Mineral Resource estimation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                                                                                                                      | mining studies, and metallurgical studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                      | HOR 2021 Auger drilling -NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sub-                   | • If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                          | No diamond core drilled during this program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| sampling<br>techniques | • If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled                                                                                                                  | HOR 2021 RC DrillingNon-core drilling, generally sampled dry, wet samples noted; Sample preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and sample             | <ul><li>wet or dry.</li><li>For all sample types, the nature, quality and appropriateness of the sample</li></ul>                                                                                    | technique considered appropriate to sample type; Cyclone cleaning routinely carried out during drilling; No<br>field duplication undertaken to date, further work planned; Sample sizes considered appropriate to the gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| preparation            | preparation technique.                                                                                                                                                                               | size of the material being sampled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                                                                                                                                                                                                      | HOR 2021 Auger drilling- Whole samples collected and swept off rubber lined collar pad; Auger drilling All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                      | auger samples drilled dry for the purposes of sampling. Sample sizes considered appropriate to the grain size of the method. A 1995 DC Vet complian programmer, not heaver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                      | <ul> <li>of the material being sampled. 1985 RC Vat sampling programme- not known</li> <li>RC and Auger sample analysis follows industry best practice whereby samples are sorted, reconciled, place</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                      | <ul> <li>A cand Adger sample analysis follows industry best practice whereby samples are solited, reconciled, practice whereby samples are sol</li></ul> |
|                        |                                                                                                                                                                                                      | division for pulverisation. The subsample was pulverised >90% passing 75µm using bowl-and-disc type mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                                                                                                                      | and ~200g of pulverised sample was taken for analysis. The technique is considered appropriate for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                                                                                                                                                                                      | process of sub-sampling. 1985 RC Vat sampling programme- not known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | • Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.                                                                                              | • Sub sampling stages are considered appropriate for the representivity of samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | <ul> <li>Measures taken to ensure that the sampling is representative of the in situ<br/>material collected, including for instance results for field duplicate/second-half<br/>sampling.</li> </ul> | <ul> <li>RC and Auger sample analysis -Residuals and original samples sources retained for checks. C20 stockpiles original metre samples not retained</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                      | • Whether sample sizes are appropriate to the grain size of the material being                                                                                                                       | • RC and Auger sample analysis-The sample size is considered industry standard for base and precious metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | sampled.                                                                                                                                                                                             | mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Quality of             | The nature, quality and appropriateness of the assaying and laboratory                                                                                                                               | HOR 2021 RC Drilling RC samples were submitted to Nagrom Laboratory, an ISO_9001:2015 assay labora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| assay data             | procedures used and whether the technique is considered partial or total.                                                                                                                            | and mineral processor for analysis by Method ICP008; 40gm Aqua Regia Digest- suite included Au, Ag, Ca,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| and<br>laboratory      |                                                                                                                                                                                                      | Fe, Hg, Mg, Pb, S, Se and Zn. Aqua Regia digest is considered an effective but partial digestion technique. stockpiles analysed by ICP008 for Copper, Gold only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tests                  |                                                                                                                                                                                                      | HOR 2021 Auger drilling -Auger samples were submitted to Nagrom Laboratory, an ISO_9001:2015 assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                                                                                                                                                                                                      | laboratory and mineral processor for analysis by Method FA50. 1985 RC Vat sampling programme- Fire ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                                                                                                                                                                                      | analysis conducted by Classic Laboratories Pty Ltd, a NATA registered laboratory. Fire assay for gold is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                                                                                                                                      | considered a total digestion technique. Vat 2 samples assayed by ICP008 for Copper, Gold only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | For geophysical tools, spectrometers, handheld XRF instruments, etc, the     arrameters used in determining the angle including instrument make and                                                  | <ul> <li>HOR 2021 RC Drilling- Standards and Blanks submitted at minimum once each per hole; acceptable levels</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.                                              | accuracy established. C20 Stockpile drilling- Standards submitted every 50 samples, acceptable standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | <ul> <li>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates,</li> </ul>                                                                                                | accuracy established                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        | external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of                                                                                                                  | <ul> <li>HOR 2021 Auger drilling- Auger sampling was submitted with two standards per 100 samples, and 1 blank</li> <li>and acceptable levels of accuracy and precision have been established. 1985 PC Vat sampling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | bias) and precision have been established.                                                                                                                                                           | 100, and acceptable levels of accuracy and precision have been established. 1985 RC Vat sampling<br>programme- not known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Criteria                                                                                                                                                     | JORC Code explanation                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                         |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Verification         • The verification of significant intersections by either independent or alternative           of sampling         • Company personnel. |                                                                                                                                                                                                      | HOR 2021 RC DrillingSignificant intersections verified by multiple Company personnel                                                                                                                                                                                               |  |  |  |
| and assaying                                                                                                                                                 | • The use of twinned holes.                                                                                                                                                                          | Some holes approximately twinning historic drilling                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                              | <ul> <li>Documentation of primary data, data entry procedures, data verification, data<br/>storage (physical and electronic) protocols.</li> </ul>                                                   | <ul> <li>Paper logs of primary data transferred to digital storage and stored, verified by alternate Company personne<br/>electronic records managed by Company personnel at Perth office.</li> </ul>                                                                              |  |  |  |
|                                                                                                                                                              | Discuss any adjustment to assay data.                                                                                                                                                                | No adjustments have been made to the data as received from the laboratory                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                                              |                                                                                                                                                                                                      | • HOR 2021 Auger drilling- Auger significant intersections and tabulations were confirmed by alternative                                                                                                                                                                           |  |  |  |
|                                                                                                                                                              |                                                                                                                                                                                                      | Company personnel from first principals. 1985 RC Vat sampling programme- not known                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                              |                                                                                                                                                                                                      | <ul> <li>N/A</li> <li>All auger drilling and sample data is captured in the field, then entered using established templates and verified in Perth office before upload into database. 1985 RC Vat sampling programme- not known</li> </ul>                                         |  |  |  |
|                                                                                                                                                              |                                                                                                                                                                                                      | <ul> <li>No adjustments undertaken.</li> </ul>                                                                                                                                                                                                                                     |  |  |  |
| Location of                                                                                                                                                  | Accuracy and quality of surveys used to locate drill holes (collar and down-hole                                                                                                                     | <ul> <li>No adjustments undertaken.</li> <li>HOR 2021 RC Drilling-Initial collar locations are determined by handheld Garmin GPS but will be surveyed</li> </ul>                                                                                                                   |  |  |  |
| data points                                                                                                                                                  | <ul> <li>Accuracy and quarty of surveys used to locate and holes (collar and down-hole<br/>surveys), trenches, mine workings and other locations used in Mineral Resource<br/>estimation.</li> </ul> | <ul> <li>How 2021 RC Drining-Initial collar locations are determined by handheld Garmin GPS but will be surveyed<br/>using DGPS before resource estimates are undertaken. Holes subsequently located by high definition<br/>photography, with estimated accuracy +/- 1m</li> </ul> |  |  |  |
|                                                                                                                                                              | estimation.                                                                                                                                                                                          | • HOR 2021 Auger drilling- Initial collar locations determined by handheld Garmin GPS but will be surveyed                                                                                                                                                                         |  |  |  |
|                                                                                                                                                              | • Specification of the grid system used.                                                                                                                                                             | <ul> <li>using DGPS before resource estimates are undertaken. 1985 RC Vat sampling programme- not known</li> <li>RC and Auger sampling- Grid system coordinates are GDA94 MGA Zone 50.</li> </ul>                                                                                  |  |  |  |
|                                                                                                                                                              | <ul> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                     | <ul> <li>RC and Auger sampling - Topographic control is available from known survey stations and Hyvista detailed</li> </ul>                                                                                                                                                       |  |  |  |
|                                                                                                                                                              |                                                                                                                                                                                                      | aerial photography acquired in 2017. Topographic control is at the decimetre level on site. 1985 RC Vat sampling programme- not known                                                                                                                                              |  |  |  |
| Data spacing                                                                                                                                                 | Data spacing for reporting of Exploration Results.                                                                                                                                                   | HOR 2021 RC Drilling-Sectional E-W drilling, typically 20m spacing, otherwise various.                                                                                                                                                                                             |  |  |  |
| and                                                                                                                                                          |                                                                                                                                                                                                      | C20 stockpile drilling was 20m x 10m, with planned infill lines removed pending results                                                                                                                                                                                            |  |  |  |
| distribution                                                                                                                                                 |                                                                                                                                                                                                      | • HOR 2021 Auger drilling- auger drilling used approx. 20m spacing in a diamond pattern.                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                              | • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore                                    | • RC and Auger sampling- drilling spacing and results employed in this program are considered sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserved.                                                         |  |  |  |
|                                                                                                                                                              | Reserve estimation procedure(s) and classifications applied.                                                                                                                                         | estimation procedure(s) and classifications applied.                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                              | Whether sample compositing has been applied.                                                                                                                                                         | No sample compositing has been applied.                                                                                                                                                                                                                                            |  |  |  |
| Orientation<br>of data in<br>relation to                                                                                                                     | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible<br/>structures and the extent to which this is known, considering the deposit type.</li> </ul>                   | <ul> <li>HOR 2021 RC Drilling-Orientation of sampling has not necessarily achieved unbiased sampling of some<br/>structures, discussed in text.</li> </ul>                                                                                                                         |  |  |  |
| geological<br>structure                                                                                                                                      |                                                                                                                                                                                                      | <ul> <li>HOR 2021 Auger drilling-Drilling in this program is vertical and considered to represent an unbiased section<br/>the material being sampled.</li> </ul>                                                                                                                   |  |  |  |
|                                                                                                                                                              | • If the relationship between the drilling orientation and the orientation of key                                                                                                                    | RC and Auger sampling- No knowledge of sampling bias                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                              | mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.                                                                           |                                                                                                                                                                                                                                                                                    |  |  |  |
| Sample<br>security                                                                                                                                           | The measures taken to ensure sample security.                                                                                                                                                        | <ul> <li>RC and Auger sampling-Prior to submission all samples were stored on-site under supervision of the Compa personnel. Samples are transported to Perth by Horseshoe Metals personnel and then onto the assay laboratory in Kalamunda.</li> </ul>                            |  |  |  |
| Audits or                                                                                                                                                    | • The results of any audits or reviews of sampling techniques and data.                                                                                                                              | <ul> <li>RC and Auger sampling-No audits or reviews have been performed to date.</li> </ul>                                                                                                                                                                                        |  |  |  |

#### Section 2 Reporting of Exploration Results

|    | Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|----|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements<br/>or material issues with third parties such as joint ventures, partnerships,<br/>overriding royalties, native title interests, historical sites, wilderness or<br/>national park and environmental settings.</li> </ul> | <ul> <li>The Horseshoe Lights Project comprises one Mining Lease (M52/743), one Exploration Licence (E52/3759) and 9 Prospecting Licenses. Current registered holder of the tenements is Murchison Copper Mines Pty Ltd (MCM) which is a wholly owned subsidiary of Horseshoe Metals Limited. Tenements E52/3759, P52/1442-50, and part of M52/743 are subject to a farm-in agreement with Kopore Metals Limited (refer ASX release 28th January 2021 – "Horseshoe West Copper/Gold Farm-in and JV Agreement"). The Kumarina project consists of two tenements, M52/27; and a mine lease application, M52/1078. MCM has 100% interest in the tenements. Unrelated party Horseshoe Gold Mine Pty Ltd (a subsidiary of Granges Resources Limited) retains a 3% net smelter return royalty in respect to all production derived from M52/743</li> </ul>                                                                                                                                                                                                                                                                                                   |  |  |
|    |                                                  | • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.                                                                                                                                                                   | <ul> <li>Mining Lease 52/743 containing the exploration results and current resources is in good standing and has<br/>been recently renewed for an additional 21 years. Prospecting Licences P52/1442-50 recently received an<br/>Extension of Term for an additional 4 years. The Company is unaware of any additional impediment to it<br/>obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|    | Exploration<br>done by other<br>parties          | • Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                              | <ul> <li>The Horseshoe Lights deposit surface gossan was discovered in 1946 and worked at a prospect level until 1949.<br/>Open pit and underground workings were operated by Asarco from 1949 to 1954. Asarco explored the deposit by sampling surface trenches, drilling one surface diamond drill hole, underground drilling and cross-cutting underground on two levels.</li> <li>In 1964, Electrolytic Zinc Company conducted widespread exploration including eight diamond drill holes in a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|    |                                                  |                                                                                                                                                                                                                                                                                                              | <ul> <li>search for copper. During 1969 and 1970 Planet Metals Ltd drilled seven holes. In the period 1975 to 1977, Amax Corporation and its partner Samantha Mines investigated the Horseshoe Lights area for base metals. This investigation included drilling a further three diamond drill holes including one beneath the southern end of the main ore zone. Placer Austex Pty Ltd and Homestake Mining Company Ltd also investigated the property.</li> <li>Previous exploration activities during the main phase of open pit mining were completed by Horseshoe Gold Mine Pty Ltd which was a wholly owned subsidiary of Barrack Mines Ltd between 1983-89. Barrack Mines Ltd drilled 43 diamond holes for 15,353m, 638 Reverse Circulation holes for 55,343m. The area was subsequently mined as a copper mine by Sabminco until 1992/3, when production ceased. The Project was re-established by current owners Horseshoe Metals in 2010 after a long period of inactivity.</li> <li>A summary of resource drilling undertaken within the Project Area is summarised in an addendum table following the JORC table documentation.</li> </ul> |  |  |
| 20 | Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                | <ul> <li>VMS mineralisation at Horseshoe Lights occurs in the core of a NNW trending and SE plunging anticline. The mineralised envelope of the deposit itself is also SW dipping and plunging to the SSE, and was likely folded. It sits within altered basalt and mafic volcanoclastic units along the contact with overlying felsic volcanic schist. The VMS mineralisation in the mine area is constrained by the tightly folded and sheared stratigraphy, and appears to be affected by offsets along N-S and NE trending brittle faults.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Ć  | Drill hole<br>Information                        | <ul> <li>A summary of all information material to the understanding of the<br/>exploration results including a tabulation of the following information for all<br/>Material drill holes:</li> </ul>                                                                                                          | <ul> <li>Refer to the body of text of this report and relevant Tables for information material to the understanding of the<br/>exploration results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 5  | D                                                | <ul> <li>If the exclusion of this information is justified on the basis that the<br/>information is not Material and this exclusion does not detract from the<br/>understanding of the report, the Competent Person should clearly explain<br/>why this is the case.</li> </ul>                              | No exclusions of information have occurred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|    | Data<br>aggregation<br>methods                   | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results</li> </ul> | <ul> <li>HOR 2021 RC Drilling- no high grade cutting, copper results reported above 0.5% Cu C20 stockpile reported above 0.3% Cu, 0.3 g/t Au</li> <li>HOR 2021 Auger drilling- Only 1m split samples are reported and simply length weighted and averaged over the length of the hole above the vat liner; no top cut, no minimum interval, no internal dilution considered. Results</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                 | and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.                                                                                                                                                                                                                                               | <ul><li>are gold only unless stated</li><li>N/A</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                 | • The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                                                             | <ul> <li>HOR 2021 RC Drilling - N/A- significant copper and gold intersects reported</li> <li>HOR 2021 Auger drilling N/A, gold assay only</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                  | <ul> <li>HOR 2021 RC Drilling- mineralisation dips around 70° to the west, east dipping holes intersect approximately perpendicular to mineralisation, vertical and west dipping holes are non-perpendicular to mineralisation</li> <li>HOR 2021 Auger drilling All intercept widths reported are downhole lengths, and equivalent to true widths for remnant vat stockpiles.</li> <li>HOR 2021 RC Drilling- typically reported as down hole length, true width not known, C20 stockpile drilling considered true width</li> <li>HOR 2021 Auger drilling- downhole lengths considered true widths</li> </ul> |  |  |
| Diagrams                                                                        | <ul> <li>Appropriate maps and sections (with scales) and tabulations of intercepts<br/>should be included for any significant discovery being reported These should<br/>include, but not be limited to a plan view of drill hole collar locations and<br/>appropriate sectional views.</li> </ul>                                                                                                                         | See plans and sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Balanced<br>reporting                                                           | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                               | Reported results considered representative, no isolation of high-grade results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Other<br>substantive<br>exploration<br>data                                     | <ul> <li>Other exploration data, if meaningful and material, should be reported<br/>including (but not limited to): geological observations; geophysical survey<br/>results; geochemical survey results; bulk samples – size and method of<br/>treatment; metallurgical test results; bulk density, groundwater, geotechnical<br/>and rock characteristics; potential deleterious or contaminating substances.</li> </ul> | <ul> <li>RC Drilling-Various, substantially covered by 2013 CSA report Horseshoe Lights Project In-situ Mineral Resources</li> <li>Auger drilling -1985 Vat Sampling programme detail taken from in-house memo "Horseshoe Lights Vat Sampling Programme March 1985", authored by Rosalind Wright, checked and verified by V.J. Novak, M.Sc.</li> </ul>                                                                                                                                                                                                                                                       |  |  |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                       | <ul> <li>Planned activities discussed in text.</li> <li>Refer to diagrams in body of text.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

| HolePrefix | Hole ID From | Hole ID To | Drill Type          | Sample Type      | Company              | Date      |
|------------|--------------|------------|---------------------|------------------|----------------------|-----------|
| EZ         | 1            | 8          | Diamond Drilling    | Unknown          | Electrolytic Zinc    | 1966      |
| HLRC-      | 1            | 30         | Reverse Circulation | RC Cuttings      | Barrack Mines Ltd    | 1983-1984 |
| RC-        | 31           | 703        | Reverse Circulation | RC Cuttings      | Barrack Mines Ltd    | 1985-1988 |
| DDH-       | 11           | 63         | Diamond Drilling    | Half Core        | Barrack Mines Ltd    | 1985-1989 |
| SH-        | 1            | 26         | Pit Seep Hole       | RC Cuttings      | Sabminco NL          | 1992-1994 |
| В          | 445A         | 565D       | Pit Bench Sample    | Channel Cuttings | Sabminco NL          | 1992-1994 |
| RC-        | 704          | 899        | Reverse Circulation | RC Cuttings      | Sabminco NL          | 1993      |
| DDH-       | 64           | 74         | Diamond Drilling    | Half Core        | Sabminco NL          | 1993-1994 |
| HDD        | 1            | 9          | Diamond Drilling    | Half Core        | Horseshoe Metals Ltd | 2012-2013 |
| HDD        | 1013         | 1037       | Diamond Tail        | Half Core        | Horseshoe Metals Ltd | 2012      |
| WRL        | 1            | 12         | Reverse Circulation | RC Cuttings      | Horseshoe Metals Ltd | 2017      |
| RC         | 1000         | 1144       | Reverse Circulation | RC Cuttings      | Horseshoe Metals Ltd | 2010-2017 |
| RC         | 1145         | 1159       | Reverse Circulation | RC Cuttings      | Horseshoe Metals Ltd | 2021      |

### Addendum: Resource Drilling History-Horseshoe Lights Copper-Gold Project